element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet & Tria Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • About Us
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      • Japan
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Vietnam
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Sudden Impact Wearables Design Challenge
  • Challenges & Projects
  • Design Challenges
  • Sudden Impact Wearables Design Challenge
  • More
  • Cancel
Sudden Impact Wearables Design Challenge
Blog Sudden Impact Challenge - Blog Entry 1
  • Blog
  • Forum
  • Documents
  • Polls
  • Files
  • Events
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: kas.lewis
  • Date Created: 5 Dec 2014 5:10 PM Date Created
  • Views 379 views
  • Likes 0 likes
  • Comments 0 comments
  • sports_helmet
  • sudden_impact
  • kas
  • challenge
  • impact
  • sudden
Related
Recommended

Sudden Impact Challenge - Blog Entry 1

kas.lewis
kas.lewis
5 Dec 2014

I would like to say a big thank you to Element14 for hosting this challenge. I would also like to say thank you to the supporters, Analog Devices, Tektronix, Electrolube and Leeds Becket University for selecting my proposal and giving me the opportunity to take this idea further.

 

Project Outline

This objective of this project is to monitor an athlete to determine if any critical harm may have occurred or will have the potential to occur. The technologies that will be incorporated are as follows.

  • Temperature sensor -  to look for heat stroke or other temperature related issues
  • 2 or 3 Accelerometers - concussion sensing using sensor fusion
  • ECG front end - for potential or occurring heart attack detection
  • ECG front end - Detect sudden heart rate increase that could be potentially harmful
  • Wi-Fi/Bluetooth - to relay information back to a monitoring station


The exception of the system is to have a battery life of 1 ~ 2 years and to be self contained in a sports helmet (hockey, football or bicycle). If some components are not possible to incorporate directly into the helmet a chest strap may be added that will communicate wirelessly with the rest of the unit.


Deliverables

To keep the project at an achievable level the deliverables I propose will be inline with what I hope to be able to achieve in 3 months. While this list is somewhat smaller than the initial proposal, it will still deliver a decent overview of the athlete and will also provide a platform for potential future development.

  • Heat stroke will be fully implemented looking for abnormal body temperatures.
  • Heart attack will be implemented on a simple level; this would be only looking at abnormally high heart rate or abnormally high climb in heart rate. There is the potential to look for an abnormal heart rhythm time permitting. However, learning the athletes unique heart rhythm will most likely not be a possibility due to time constraints and potential complexity in doing such.
  • Individual concussion severity will be fully implemented and have a high degree of accuracy this should use some form of filtering to ensure only actual concussions are registered and measured
  • Cumulative concussion force may not be fully or correctly implemented. As it is still not fully clear in the scientific community how this should be measured, my attempts to do so may appear flimsy and illogical. While there may be an attempt at this it may be incorrect and inaccurate and therefore left out in the final product.
  • Monitoring and reporting, for this the CC3100 in conjunction with a MSP430F5529 or similar will be used to post the data to a cloud based system such as Plot.ly to give real time information on the athletes sensor measurements.


Next Steps

The immediate next steps is to better understand the proposed devices to be used. This includes reading through and understanding the data sheets and mapping what each component needs in the way of power (3.3V or some other value) communication (I2C, SPI, etc.) and what its limitations are in terms of performance and usability (FIFO, interrupt driven, etc)
At this point there is no plan for any software implementation or outline as there needs to be a better understanding of the individual components and what each one needs and is capable of. There is however an intention to layout a data flow and processing diagram in the coming steps to better help the layout of the hardware and the outline of the software.

Data Sheets

For convenience I have linked the data sheets for the proposed components to be used, as more components are added their data sheets may be added below.

  • ADuCM350, 16-Bit Precision, Low Power Meter On A Chip with Cortex-M3 and  Connectivity (link)
  • AD8232, Heart Rate Monitor Front End (link)
  • ADT7320, ±0.25°C Accurate, 16-Bit Digital SPI Temperature Sensor (link)
  • ADXL375, 3-Axis, ±200 g Digital MEMS Accelerometer (link)
  • ADXL377, Small, Low Power, 3-Axis ±200 g Accelerometer (link)
  • ADXL362, Micropower, 3-Axis, ±2 g/±4 g/±8 g Digital Output MEMS Accelerometer (link)

 





Tweet

Follow @Kazzzzzzzzzzz

Follow Kas' blog
  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube