element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Essentials
  • Learn
  • Learning Center
  • Essentials
  • More
  • Cancel
Essentials
Documents Magnetic Encoders
  • Forum
  • Documents
  • Polls
  • Files
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Essentials requires membership for participation - click to join
Actions
  • Share
  • More
  • Cancel
Engagement
  • Author Author: pchan
  • Date Created: 24 Sep 2021 4:50 PM Date Created
  • Last Updated Last Updated: 17 Jun 2022 4:41 PM
  • Views 6607 views
  • Likes 5 likes
  • Comments 22 comments
Related
Recommended

Magnetic Encoders

This learning module discusses the essentials of rotational absolute magnetic encoders, including their structure, operation, and applications.

element14 Learning Center

 

image

Mechatronics II: Magnetic Encoders

Sponsored byimage

  1. Introduction | 2. Objectives | 3. Basic Concepts and Analysis | 4. Applications | 5. Conclusion | Related Components | Test Your Knowledge image

 

1. Introduction

As robotics and automation systems are increasingly used in machines in manufacturing and other industries, various sensors are necessary to provide the required feedback for accurate and repeatable operation. For example, the accurate movement and position of a robotic arm relies on a position sensor's feedback information about the robotic arm's placement. This information is typically recorded by a rotary encoder. Encoders are sensing devices that convey the needed assessment about motion parameters such as speed, direction, distance, or position of the actuator. Various encoders are available, and they work with different motion types, communication, and detection methods. This learning module discusses the essentials of rotational absolute magnetic encoders, including their structure, operation, and applications.

 

2. Objectives

Upon completion of this module, you will be able to:

image Explain the basic concept of encoders

image Discuss the different type of encoders and their operation

image Understand Vishay's Rotational Absolute Magnetic RAMK series encoders

image Describe applications based on rotary encoders

3. Basic Concepts and Analysis
Back to Top

An encoder converts mechanical motion (linear or rotary) into an electrical signal in a digital code or pulse train using magnetic or optical sensing methods. This code contains information concerning position, velocity, and direction. Encoders are integrated into assembly robots, welding robots, automatic guided machines, and other industrial robots. Figure 1 shows an industrial robotic arm with a functional block diagram. Each joint in this robotic arm is a closed-loop motion system, with rotational absolute magnetic position and speed feedback sensors or encoders.

  image

Figure 1: Industrial Robotic Arm and Encoder Functional Block Diagram

The classification of encoders is based on their detection methods and output format. Encoders are classified into two main groups: rotary encoders and linear encoders. A rotary encoder senses rotational motion and a linear encoder recognizes movement on a linear path. The scope of this module is limited to rotational (rotary) encoders.

- 3.1 Optical Encoders

An optical encoder consists of a light-emitting device (LED), photosensors, and a code disc (or code wheel) with slits in the radial direction. A convex lens collimates the light from the LED, transforming directionless diffused light into parallel beams (Figure 2). A code disc is attached to a rotating shaft, such as the shaft found in a motor. An optical pulse is generated when the light passes through the slits of the rotating code disc. A photosensor detects this optical pulse and converts it into an electrical signal. Because this method is blind to rotational direction changes, the code disc is designed to generate two pulses, which are distinguished by the quarter-cycle shift. These two pulses are termed Phase A and Phase B. Rotational direction depends on which one of the two pulses (A or B) rises first. A precise determination of the amount of rotation, even with rotational direction changes, is found by subtracting the pulse tally in reverse rotation.

image

Figure 2: Optical Rotary Encoder (Image Source: Machine Design)

In the context of structure, optical encoders are classified into two types: a transmissive type, in which the code disc is positioned between the photosensor and light-emitting device (LED), and the reflective type, where the photosensor and LED are on the same side, with the code disc reflecting light.

Resolution can be improved by increasing the number of slits on the code disc. Optical encoders are typically used in servo control and other tasks that require precise motor control. The encoder's immunity to magnetic fields makes it suitable for use in applications with a strong magnetic field.

- 3.2 Magnetic Encoders

A primary magnetic encoder has a permanent magnet attached to the tip of a rotating body, such as a motor shaft, and a magnetic sensor called the Hall sensor. A Hall sensor takes advantage of the Hall Effect, the phenomenon where a transverse electric field is generated in a material carrying an electric current when the material is placed in a magnetic field that is perpendicular to the current. Magnetic encoders detect rotational position as the magnetic field changes, converting this information into electrical signals, which are then sent to the output. The Hall sensor is mounted on a PCB in a location where it can detect changes in the magnetic field caused by the movements of the permanent magnet on the shaft. When the permanent magnet rotates (with the shaft), the direction of the magnetic field changes; this change is detected by the Hall sensor and converted to a sine wave output with a frequency equal to the rotational speed of the shaft.

  image

Figure 3: Magnetic Rotary Encoder (Image Source: Machine Design)

The rotation of the permanent magnet causes its magnetic field to rotate. The magnetic field near the rotation axis revolves with a constant strength. The Hall sensor converts this variation of magnetic field distribution into an electrical signal. Because the Hall sensor can only detect a magnetic field in a single direction, two Hall sensors, Bx and By, are required to compute the rotational position of the XY rotation plane. An analog-to-digital converter is used to convert the electrical signal from the Hall sensors into a digital signal. A trigonometric function is employed to convert the signals into angular information. Synthesizing the X-axis and Y-axis components orthogonally to each other forms a plane figure called a Lissajous waveform or Lissajous figure. Many oscilloscopes are able to display Lissajous figures.

- 3.3 Angular Error and Correction

  image

Figure 4: Lissajous Example – diagram 1 is for a theoretically perfect device; the three following diagrams show various angular errors compared to the perfect figure.

Lissajous figures can be used to reveal errors and anomalies. Absent any misalignment, a Lissajous figure will, in theory, be rendered as a perfect circle. A typical Lissajous figure, however, is not a perfect circle, indicating the presence of one or more angular errors. Figure 4 illustrates the Lissajous figures for an error-free sensor, as well as Lissajous figures representing sensors with various angular errors. Angular errors can occur for several reasons; for example, a misalignment of the Hall sensor could result in distortion in the input magnetic field. Additional causes of angular errors include stray magnetic fields, incorrect mounting inclination (or tilt) of the Hall sensor, and the production deviations in the Hall sensor or surrounding electronic components.

There are various techniques to reduce the effects of angular errors. The Hall sensor can be placed at the center of a ring magnet, shielding it from stray magnetic fields. Additionally, the input magnetic field can be strengthened, increasing the signal-to-noise ratio, thus reducing unwanted effects due to noise generated from the Hall sensor.

Other types of detection method-based encoders are the mechanical/contact type and the electromagnetic induction type. A contact-type encoder uses a variable resistor (potentiometer) to detect the rotational position, showing a change in resistance proportional to the rotation angle. The electromagnetic induction method reads changes in the magnetic field generated between the induction coil and the fixed coil attached to the motor shaft.

- 3.4 Incremental and Absolute Type Encoders

A rotary encoder generates output for rotation and angular information in two distinct ways: relative angle or absolute angle. The output signal format of each encoder type differs: relative angle encoders indicate the number of angles that passed before and after moving, whereas absolute angle encoders show the number of completed degrees from the initial position.

  image

Figure 5: Incremental Type Rotary Encoder  (Image Source: Machine Design)

Incremental encoders detect movement from one position to the next and generate output in the digital serial pulse train according to the rotation. The incremental technique has a single row of slits, as shown in Figure 5, and produces serial pulse output.

The disk's movement (angular change) is the number of pulses. With a four-slit arranged row, there are four pulses per rotation. One pulse rotates 360° / 4 = 90°. If there are eight slits, a single pulse rotates 360° / 8 = 45°. A larger number of slits mean a higher resolution of angular change and a finer representation of movement.

 

  image

Figure 6: Absolute Rotary Encoder with 4 Rows of Slits (Image Source: K. Craig, NYU Engineering / Analog IC Tips)

Absolute Angle Detection Encoders detect the distance from the home position, outputting the current absolute-angle position without the need for any reference information or movement. This type of encoder outputs an analog voltage in digital serial code in response to microcomputer instructions. This output method is called an absolute method.

An absolute method consists of multiple rows. The presence of slits in four rows implies an absolute possible 16 angles of position, from 0000 to 1111 in a binary number. If the row of slits doubles to eight, the absolute positions of 256 different angles can be recorded (from 00000000 to 11111111). With the increase in the rows of slits, the angle change resolution also increases, permitting a more precise representation of the quantum of movement.

- 3.5 Vishay's Robotic Magnetic Encoder

Vishay offers various encoders for robotics applications, including the Rotational Absolute Magnetic Kit Encoder (RAMK) series, which converts a mechanical angular position into a digital signal with high precision. Based on Hall-Effect magnetic technology, these position sensors offer better performance, accuracy, and resolution than traditional Hall Effect sensors for industrial robotics and other applications. Contactless technology enables greater than 13-bit accuracy, greater than 16-bit repeatability, and 19-bit resolution, while maintaining sturdiness against vibration, mechanical shock, external magnetic fields, moisture, airborne pollution, and temperature changes. The RAMK series has an electrical angle of 360° and functions over a −40°C to +85°C temperature range, with greater maximum temperatures available.

image

Figure 7: RAMK Series Encoder patented design and User Connections

The RAMK060's Rotor + Stator kit, with its off-axis design, slim ~6.5 mm profile, and lightweight (< 55 g), make it suited for applications where little space is available. Its accuracy enables easy detection of angular positions. It has a 60 mm outside diameter and a 25 mm inner diameter. Several multi-turn variants are available. These encoders are available in SPI, SSI, or Biss-C output signals. The main advantages of this series are self-calibration for mechanical misalignment compensation, integrated self-monitoring, and last absolute position memorization before power-off. RAMK060M11319FB661, RAMK060M11319JB663, and RAMK060M11319LB659 are some examples of this series.

4. Applications
Back to Top

Encoders are appropriate for applications with repetitive and precise movements. Examples include arm joints for collaborative and industrial robots, machine tools for printing, textile manufacturing, steering wheels for automated vehicles, and milling. Here we will discuss how encoders fit into some of these applications.

Collaborative Robot Arm

Robots assemble, shift, weld, and paint heavy payloads. They need enormous, expensive, and complex systems to ensure system safety. Collaborative robots are now a part of the human environment, assisting operators by performing heavy lifting tasks, supporting precision movements, and substituting for humans in regular, repeatable tasks with more consistency and accuracy.

A Collaborative Robot Arm (Cobot) is a robot intended for direct human-robot interaction inside a shared space where humans and robots work closely together. They are composed of a series of rotational joints, each driven by a motor, and precision controlled using encoder feedback. High-resolution rotary encoders enable better detection and granular control. The RAMK060 series magnetic encoder is an ideal solution when it comes to better detection and minute control. Figure 8 illustrates the assembly of this encoder with a motor. Cobots have many uses, including information robots in public spaces, logistics robots that transport materials within a building, and industrial robots that help people move heavy parts or operate machine feeding or assembly operations.

image

Figure 8: RAMK060 Magnetic Encoder assembly with DC Motor on Joint

Automated Guided Vehicles

Automated guided vehicles (AGVs), also termed autonomous mobile robots (AMRs), are applications that require accurate and high-resolution rotary encoders. These are self-driven transport systems used for heavy-duty tasks managed by forklifts, conveyor systems, or manual carts. AGVs perform repetitive tasks, such as moving large quantities of material in various applications in the automotive industry, logistics, smart warehouses, food and beverage, and pharmaceutical industries. An encoder must provide accurate position information for the AGV to determine its exact position when loading, unloading, and stacking the material. The precise automation of wheel steering controls in AGVs is enabled by the encoder's accurate feedback about the wheel’s angular position. An operator-adjusted AGV wastes time, resulting in low efficiency and affecting the entire manufacturing process.

image

Figure 9: Assembly with RAMK060 Encoder for Wheel Steering Control

AGVs operating in a plant or warehouse inevitably experience shocks and impacts, due to harsh or cluttered environments. The selected encoder must be highly resistant to shock and vibration, and capable of maintaining its accuracy in a complicated environment. Vishay's RAMK060 series encoders can achieve all of these positional feedback requirements, as they are accurate with a precise resolution, plug and play, easy to mount, and have high customization capability. They are immune to moisture, pollution, temperature, and external magnetic fields, and are resistant to shocks and vibrations. Figure 9 shows an assembly with an RAMK060 encoder to control wheel steering.

5. Conclusion
Back to Top

As industries rapidly evolve towards automation, encoders that control the motion of machinery must become more accurate and reliable. Rotary encoders are a crucial part of the feedback system in the motors of arms, control wheels, and any type of machinery with rotating parts. Rotary encoders use several technologies, including optical and magnetic, and can be designed to the accuracy and precision needed to support automation and robotics. Vishay’s RAMK series of magnetic encoders delivers accuracy and precision in a compact and durable package, and is well suited for use in modern day machinery.

Glossary

image Absolute Position: A position value determined by reading the distance away from the home position.

image Accuracy: A measurement of how close the output is to the actual value, for example the deviation between the exact position and the encoder's reported position.

image Biss: A bidirectional/serial/synchronous protocol based on a real-time interface designed to work in B mode and C mode (continuous mode). It enables secure serial digital communication between the controller, sensor, and actuator.

image Hall Sensor: A magnetic sensor that works based on the Hall Effect. The principle of the Hall Effect states that when a current-carrying conductor or a semiconductor is introduced to a perpendicular magnetic field, a voltage can be measured at the right angle to the current path.

image Precision: Describes the repeatability of measurements, where a set of values is measured relative to each other, rather than the actual value.

image Repeatability: A measurement of the variation in a result over many attempts to produce the same outcome, under the same conditions.

image Resolution: The number of measuring segments in one revolution of an encoder, commonly measured in pulses per revolution (PPR) for incremental encoders and bits for absolute encoders.

image SPI (Serial Peripheral Interface): A synchronous serial communication interface specification used for short-distance communication.

image SSI (Serial Synchronous Interface): A serial interface standard for industrial applications between a master (e.g. controller) and a slave (e.g. sensor). SSI is differential, simplex, and non-multiplexed and relies on a time-out to frame the data.

*Trademark. Vishay is a trademark of Vishay Inc. Other logos, product and/or company names may be trademarks of their respective owners.

Related ComponentsBack to Top

image

The element14 ESSENTIALS of Magnetic Encoders discusses the essentials of rotational absolute magnetic encoders, including their structure, operation, and applications. To extend the knowledge covered in the main module, this supplementary guide discusses the types of related components used for prototyping or product development.

Magnetic Encoders

 

image

RAMK060M11319LB659, Encoder, 5 MHz, Biss-CI, 25 mm Shaft, 10000 rpm

Buy Now

Rotational Absolute Magnetic Kit Encoder Version 60 mm HP Position Sensor Version 2.1

image Dedicated to robotics applications

image High precision, high repeatability, high resolution, single or multi-turns variant

image Plug and play or self-calibration

image Memorization of last position before power off

image Not sensitive to external magnetic fields and temperature

image Not sensitive to moisture and pollution

image Well suited for harsh conditions (vibrations, shocks, etc.)

image Built-in self-monitoring

image Hall effect principle

image Protected design, patent EP 2711663

 

image

RAMK060M11319FB661, Encoder, 4 MHz, SPI, 25 mm Shaft, 10000 rpm

Rotational Absolute Magnetic Kit Encoder Version 60 mm HP Position Sensor Version 2.1

image Dedicated to robotics applications

image High precision, high repeatability, high resolution, single or multi-turns variant

image Plug and play or self-calibration

image Memorization of last position before power off

image Not sensitive to external magnetic fields and temperature

image Not sensitive to moisture and pollution

image Well suited for harsh conditions (vibrations, shocks, etc.)

image Built-in self-monitoring

image Hall effect principle

image Protected design, patent EP 2711663

Buy Now

image

RAMK060M11319JB663, Encoder, 3 MHz, SSI, 25 mm Shaft, 10000 rpm

Rotational Absolute Magnetic Kit Encoder Version 60 mm HP Position Sensor Version 2.1

image Dedicated to robotics applications

image High precision, high repeatability, high resolution, single or multi-turns variant

image Plug and play or self-calibration

image Memorization of last position before power off

image Not sensitive to external magnetic fields and temperature

image Not sensitive to moisture and pollution

image Well suited for harsh conditions (vibrations, shocks, etc.)

image Built-in self-monitoring

image Hall effect principle

image Protected design, patent EP 2711663

Buy Now

For more available products Shop Now

 

 


Test Your KnowledgeBack to Top

image

Are you ready to demonstrate your knowledge of Magnetic Encoders?  Then take a quick 10-question multiple choice quiz to see how much you've learned. To earn the Mechatronics II Badge, read through the learning module, attain 100% on the Quiz, leave us some feedback in the comments section, and give the learning module a star rating.

         
Attachments:
image MechatronicsII.pdf
  • vishay
  • encoder
  • mechatronics
  • ecoder
  • encoders
  • magnetic_encoders
  • mechatronic
  • magnetic encoders
  • ess_module
  • Share
  • History
  • More
  • Cancel
  • Sign in to reply
  • Former Member
    Former Member 7 months ago

    Very informative

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
  • kmikemoo
    kmikemoo over 3 years ago

    Just playing with the new site.

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
  • will06
    will06 over 3 years ago

    Interesting...

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
  • beacon_dave
    beacon_dave over 3 years ago

    Interesting overview and quiz.

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
  • rics02
    rics02 over 3 years ago

    thank you!

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
  • koudelad
    koudelad over 3 years ago

    Great introduction, thank you!

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
  • Fred27
    Fred27 over 3 years ago

    I think there's a typo in Q5. I'm not sure exactly what this means: "Absolute Angle Encoders output current absolutely angle"

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
  • hbleiwas
    hbleiwas over 3 years ago

    Great intro

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
  • phoenixcomm
    phoenixcomm over 3 years ago

    it was a nice quiz.

    BUT I have a problem:

    1) True or False: Encoders are sensing devices that convey the needed assessment about motion parameters such as speed, rate, direction, distance, or position in relation to the controller.

        True

        False

     

    But it should be False as the controller has nothing to do with it. ie an Absolute Encoder knows where it is even if you lose power.

     

    7) True or False: Repeatability is a measure of how consistently an encoder can return to the same commanded position.

        True

        False

    this makes no sense you don't COMMAND an encoder you read or integrate the encoder. Therefore this should be false!!

    The definition of Repeatability: Is the measure of consistency that the encoder outputs when returned to the same angle.

    ~~ Cris

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
  • wolfgangfriedrich
    wolfgangfriedrich over 3 years ago

    I remember those old mouse designs, where the ball always collected dust and lint.

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
>
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube