First, I am going to suggest a soundtrack for reading this post… Please hit play below and move on:
Touchscreens are becoming the user interface of the future. It began with smart phones, then came the iPod Touch and then tablets. Now we can find touchscreens in many places. Some restaurants have small touchscreen computers which let diners flip through the menu and check the balance of their current bill. Newer apartment and building complexes are integrating touchscreen directories in the front of the building to get in contact with the person of interest. In addition, many computers and laptops are offering the choice of a touchscreen monitor for an increased user experience. With that said, many new touch technologies are beginning to emerge. So let’s take a look at some of these upcoming innovations and catch a glimpse into the future of the touchscreen interface.
(via Ultrahaptics)
To begin with we have a new haptic feedback system being developed by researchers from the University of Bristol in the UK. This system integrates a leap motion controller along with ultrasound speakers placed behind a display. While the leap motion controller is in place to track the user’s fingers and hand gestures, the ultrasound speakers provide a sensation to the fingers to give users feedback that will stimulate the sense of touch. The system is called UltraHaptics and consists of an array of 320 of the previously mentioned ultrasound speakers.
Tom Carter, a lead researcher involved in the work stated, “What you feel is a vibration. The ultrasound exerts a force on your skin, slightly displacing it. We then turn this on and off at a frequency suited to the receptors in your hand so that you feel the vibration. A 4-Hertz vibration feels like heavy raindrops on your hand. At around 125Hz it feels like you are touching foam and at 250Hz you get a strong buzz.”
A similar technology being developed by Disney Research is one that involves electrostatic forces to simulate a sense of touch. Rather than using sound waves to compress the skin and provide the feeling of a textured surface, Disney's researchers have been employing electrovibrations which can stretch and compress the skin. The vibrations have been used to create the same type of lateral friction one would experience when sliding their finger across a bump.
“Our brain perceives the 3D bump on a surface mostly from information that it receives via skin stretching,” said Ivan Poupyrev, who directs Disney Research, Pittsburgh's Interaction Group. “Therefore, if we can artificially stretch skin on a finger as it slides on the touch screen, the brain will be fooled into thinking an actual physical bump is on a touch screen even though the touch surface is completely smooth.”
Both of the aforementioned technologies are hoping to enhance the user experience and create more tactile-rich displays. On the other hand, Japanese company, AsukaNet, is developing an Aerial Imaging Plate. Very similar to what a hologram is like, the system would project an image which will appear to be floating in front of a user. The user can then navigate through menus or anything a touchscreen interface may be used for. To accomplish this task a tablet interface is used alongside reflective surfaces which project the image in front of a user at a 45 degree angle. Furthermore, the user must also stand in a specific position in front of the display. If not, the image will appear as a normal flat surfaced picture. The company mentions this feature can be used as an advantage in scenarios in which privacy is important. For instance, when interacting with an ATM this feature could increase the privacy since only the user in front of the display would be able to see which numbers they are poking at. Also the projected display increases the sanitation many interfaces lack. Since there will be no physical contact involved, germs and viruses cannot be transmitted from one person to another.
Printed toy with a little optical imaging sensor built in... (via Disney Research)
The last of the new and innovating touch technologies we can expect to be seeing in the future is curved touch screens. One of these comes from Disney Research and is made during the process of 3D printing. Thanks to a light sensitive plastic, known as photopolymer, optical fibers can be printed alongside the main structure of a 3D object. What this allows the engineers to do is connect the optical fibers to an image source which can then transmit the information to and from a curved surface. Disney has already created many prototypes, many of them cartoon-shaped creatures with large eyes that look around the room.
The bendy screen on the left. Possible image of the actual LG G Flax phone on its way to the market. (via LG)
LG has also announced a flexible display which is set to be released next year. It is a 6 inch flexible OLED screen which LG claims to be indestructible. The display is going to made from aplastic substrate while also consisting of layers of a film-type encapsulation and a protection film. Overall the display is going to be only 0.44mm thick, weigh only 7.2 grams, and possess a vertical concave radius of 700mm.
“LG Display is launching a new era of flexible displays for smartphones with its industry leading technology,” said Dr. Sang Deog Yeo, Executive Vice President and Chief Technology Officer of LG Display. “The flexible display market is expected to grow quickly as this technology is expected to expand further into diverse applications including automotive displays, tablets, and wearable devices. Our goal is to take an early lead in the flexible display market by introducing new products with enhanced performance and differentiated designs next year.”
LG will not be the only ones in the flexible display market. Samsung has also been showing off some prototypes and experimenting with technologies of their own. We can expect these technologies to hit the market some time late next year. However, CES 2014 is also right around the corner. As the world's largest gathering place of consumer electronics, it is almost certain we will be seeing many more innovative display technologies.
C
See more news at: