Highly sophisticated electronics like infrared instruments and other sensors need to be cooled to precisely detect what they're designed to capture, even to temperatures as low as -320 F (-195 C). The High Power Microcryocooler introduced this week by Lockheed Martin is said to be the industry's highest power density cryocooling system. It delivers more than 150 watts per kilogram, compared to the 30-60 watts per kilogram rating of most space-rated cryocoolers, while maintaining roughly the same power efficiency rating, according to the company. It also weighs under a pound, which is less than half the weight of similar cooling systems, again according to Lockheed Martin.
The company’s previous tiny heat-rejecting device, introduced a year ago, was one-third the size of its predecessors and already the lightest in its class. The new unit packs three times the power density of the prior design.
Smaller cryocoolers mean more affordable satellites and launches. With higher power, the microcryocooler enables larger, more sensitive IR sensors, which is especially useful for very high-resolution images. Beyond enabling compact, higher-power spacecraft payloads the unit will help make possible smaller sensor platforms for manned aircraft and UAVs.