element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
KEITHLEY
  • Products
  • Manufacturers
  • KEITHLEY
  • More
  • Cancel
KEITHLEY
Blog How to Measure a MOSFET I-V Curve
  • Blog
  • Forum
  • Documents
  • Events
  • Polls
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join KEITHLEY to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: r.ngugi
  • Date Created: 9 Aug 2024 9:58 AM Date Created
  • Views 2003 views
  • Likes 2 likes
  • Comments 0 comments
  • mosfet
  • Source Measure Units
  • I-V curves
Related
Recommended

How to Measure a MOSFET I-V Curve

r.ngugi
r.ngugi
9 Aug 2024

This blog first appeared on the Tektronix website.

image

One of the best ways to ensure a MOSFET is functioning properly and meets specifications is to determine its characteristics by tracing I-V curves. There are a number of output characteristics requiring I-V tests; you can derive gate leakage, breakdown voltage, threshold voltage, transfer characteristics, and drain current all by simply tracing I-V characteristics and verifying the device is working as it should.

Keithley’s source measure units (SMU) are core instruments for MOSFET I-V characterization tests. Their ability to source voltage while measuring current or source current while measuring voltage can be combined with both DC and sweep operations to perform measurements such as forward voltage (VF), reverse leakage, and reverse breakdown voltage (VB) without changing a connection to the device under test (DUT) (Figure 1).

image

Using built-in features, multiple SMUs can be synchronized for parametric measurements like threshold voltage, beta, and transconductance.

Measuring I-V curves of a MOSFET with Keithley Source Measure Units

A family of MOSFET curves can be obtained with just two SMU instruments (Figure 2). For each base current from SMU1, SMU2 sweeps VCE and measures IC.

image

Pulsed I-V characterization, wherein voltages and currents are applied for a very short time and at a limited duty cycle, is another common way to measure I-V curves. Pulsed I-V measurements can reduce test times and allow for MOSFET characterization without exceeding its safe operating area or causing the device to self-heat and parameters to shift.

Two pulsed I-V channels are typically used to measure these MOSFET I-V curves with one channel connected to the gate and the other to the drain. The ground of each channel is connected to the MOSFET source pin.

To construct the transistor curves, the gate channel first applies voltage to the gate, then the drain channel sweeps VDS through a range of values, measuring the resulting current at each point. Next, the gate channel applies a different voltage to the gate and the process repeats, constructing the next MOSFET I-V curve in the set.

Keithley’s SMU instruments simplify this process with built-in pulsed and DC sweeps, including linear staircase, logarithmic staircase, and custom sweeps (Figure 3). Sweeps coupled with other throughput enhancements like built-in limit inspection, digital I/O, and a component handling interface are ideal for high-speed, non-stop production environments. All sweep configurations can be programmed for single-event or continuous operation.

image

Tektronix Keithley Instrument and software solutions for MOSFET I-V characterization

Figure 4 illustrates various hardware and software solutions for MOSFET I-V characterization. In the first example, Series 2400 SourceMeters are connected to a PC. In the second example, Series 2600B SourceMeters are connected with TSP-Link technology, which seamlessly integrates multiple SMUs into a single system that can be programmed and controlled as a single instrument through the master 2600B SMU or a PC.

image

Kickstart I-V characterizer software enables quick test setup and analysis, performs current versus voltage (I-V) testing on a variety of materials and devices, and can control up to four SMU instruments in each test

The third example uses the Keithley 4200A-SCS Parameter Analyzer. This system includes an embedded PC, Windows® operating system, and mass storage. It’s a complete signal characterization solution for FETs and test structures. It supports up to nine SMU modules and provides an array of Windows-based software that is so intuitive, even a novice can use the system with ease. This point-and-click software supplies a full range of functionality, including managing tests, generating reports, automating test sequencing, and creating user libraries. The Model 4200-SCS is a complete one-box solution that combines sub-femtoamp resolution with real-time plotting and analysis.

Engineers also have the option of combining any Keithley SMU with I-V curve tracer software to perform I-V curve tracing and characterize two-pin devices like diodes. If you need help finding the solution that’s most appropriate for your needs, contact the experts at Tektronix.

  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube