element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet & Tria Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • About Us
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      • Japan
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Vietnam
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Embedded and Microcontrollers
  • Technologies
  • More
Embedded and Microcontrollers
Blog Engineers made a Battery-Free Phone
  • Blog
  • Forum
  • Documents
  • Quiz
  • Polls
  • Files
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Embedded and Microcontrollers to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: Catwell
  • Date Created: 19 Jul 2017 6:47 PM Date Created
  • Views 1647 views
  • Likes 3 likes
  • Comments 4 comments
  • research
  • pcb
  • on_campus
  • phone
  • wireless power
  • cabeatwell
  • school
  • power management
  • wireless
  • university
  • cell phone
  • power
  • innovation
Related
Recommended

Engineers made a Battery-Free Phone

Catwell
Catwell
19 Jul 2017

image

A team of faculty members and students at the University of Washington have developed the first phone that can operate without a battery to power its functions. The phone is made with commercially available components on a printed circuit board. (Photo via University of Washington, you can read the research paper here)

 

Communication is an essential part of life, and the telephone has likely been the greatest innovation in enabling communication between two remote locations, but ever since the need to speak on telephones went mobile, reliance on batteries can range from a minor inconvenience to a catastrophe. The phone developed by researchers at the University of Washington is a promising development in mobile communication and navigates around the possible perfect storm of an emergency scenario and a dead cell phone. It uses ambient power from surrounding radio signals, as well as from light because it has tiny photodiodes which capture light and convert it into an electrical current.

 

The user places a call by pressing capacitive touch buttons on the circuit board (which have the same layout as a regular phone), and according to the research team’s video, the phone transmits digital packets back to the cellular network of the base station from which it draws power, and they combine to form a phone number that is dialed using Skype. According to the team’s research paper, in its testing, the phone picked up power from radio frequency signals transmitted by a base station 31 feet away from the phone and was able to place a Skype Call to a base station that was 50 feet away. The team believes that their recent innovation, “...is a major leap in the capability of battery-free devices and a step towards a fully functional battery-free cellphone.”

 

At this stage in its development, the battery-free phone’s prototype has limited functionality, but it only consumes about 3.5 microWatts of power which is sufficiently supplied by ambient radio waves and light, for the purposes of this research. In Jennifer Langston’s article for UW News, co-author and electrical engineering doctoral student, Bryce Kellogg, is quoted as saying, “...the amount of power you can actually gather from ambient radio or light is on the order of 1 or 10 microwatts. So real-time phone operations have been really hard to achieve without developing an entirely new approach to transmitting and receiving speech.”

 

According to Langston, the team plans on improving the operating range and encrypting conversations, as well as trying to stream video on a battery-free cell phone by adding a visual display using low-power E-ink screens. This will obviously necessitate more power, and therefore a new approach to supplying the power needed based on the estimates of available power provided by Kellogg. As it stands, the University of Washington team has provided an intriguing proof-of-concept, as well as future directions for exploration and refinement, so now the world must wait to see if their revolutionary invention sparks an even greater change in the culture of mobile communication.

 

The team’s research was funded by the National Science Foundation and Google Faculty Research Awards.

 

Watch the video below to see the team demonstrate the operation of their battery-free phone.

 

You don't have permission to edit metadata of this video.
Edit media
x
image
Upload Preview
image

 

 

Have a story tip? Message me at: cabe(at)element14(dot)com

http://twitter.com/Cabe_Atwell

  • Sign in to reply

Top Comments

  • johnbeetem
    johnbeetem over 8 years ago in reply to michaelkellett +2
    Michael Kellett wrote: This thing is useless - it gets a tiny amount of power by using a special base station in close proximity. It is NOT a cell phone in any normal sense. As for video over e-ink display…
  • gfiandy
    gfiandy over 8 years ago +1
    As noted above this is almost useless. If they want to research something people might actually want an emergency phone with a standard charging, hand crank and PV cell that has extra long range transmission…
Parents
  • gfiandy
    gfiandy over 8 years ago

    As noted above this is almost useless. If they want to research something people might actually want an emergency phone with a standard charging, hand crank and PV cell that has extra long range transmission and extra high sensitivty receiver would be ideal for keeping in a car, hiking, or other possible emergency back up situations.

     

    Part of of the problem with modern phones in the smart part the other problem is 3G and higher specification transmissions seem to need much more power than 2G. Perhaps the new low power IOT protocols could be adapted to send short text messages as a emergency system.

     

    Andy.

    • Cancel
    • Vote Up +1 Vote Down
    • Sign in to reply
    • More
    • Cancel
Comment
  • gfiandy
    gfiandy over 8 years ago

    As noted above this is almost useless. If they want to research something people might actually want an emergency phone with a standard charging, hand crank and PV cell that has extra long range transmission and extra high sensitivty receiver would be ideal for keeping in a car, hiking, or other possible emergency back up situations.

     

    Part of of the problem with modern phones in the smart part the other problem is 3G and higher specification transmissions seem to need much more power than 2G. Perhaps the new low power IOT protocols could be adapted to send short text messages as a emergency system.

     

    Andy.

    • Cancel
    • Vote Up +1 Vote Down
    • Sign in to reply
    • More
    • Cancel
Children
No Data
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2026 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube