The ridges and bumps of the OLED, when mimicking the firefly, enhance its luminescent efficiency (via American Chemical Society, 2016)
Who knew that a firefly’s rear end contained the secret to efficient lighting? When aeronautic engineers designed plane wings with structures that imitated a bird’s wing, they reduced turbulence and continue to be used in modern aircraft. Such biomimicry is now enhancing the world of fluorescent lighting and design. Up until recently, fluorescent lights have been designed much like the conventional light bulb, with smooth curvature. Upon examining the structures in the tail of fireflies belonging to the species Pyrocoelia rufa, researchers at the Korean Advanced Institute for Science and Technology initially noticed marked ridges and nanostructures that give the firefly’s organic light-emitting diode (OLED) console the appearance of honeycomb rather than a smooth bulb.
Because the firefly has such an efficient lighting capability, the researchers designed a synthetic replica and tested its efficiency. Using a scanning electron microscope, spectroscopy, and numerical analysis, the team was able to assess the structure of a firefly’s lantern. The synthetic replica was made using micromolding and polydimethylsiloxane oxidation, which recreated the asymmetrical nano ridges.
When tested, the external quantum efficiency had increased 61%. The nanostructures also reduced reflection, which contributed to the increase in light transmission.
While the fluorescent lighting and design industry has yet to catch up with mass-marketed designs that incorporate this research, the efficiency of such a design makes that highly attractive. The cost of making the materials may make scaling production up for a mass market unfeasible currently, but it’s only a matter of time. Advances in molding technology and increased efficiency in the design of synthetic polymers often occur in tandem with other technologies. It may be just a few years before lights designed on the humble firefly appear in our homes. Read more about this effort in the KAIST paper after this link.
Have a story tip? Message me at: