element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Embedded and Microcontrollers
  • Technologies
  • More
Embedded and Microcontrollers
Blog For the first time, engineers demonstrate two-qubit quantum computing capabilities
  • Blog
  • Forum
  • Documents
  • Quiz
  • Polls
  • Files
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Embedded and Microcontrollers to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: Catwell
  • Date Created: 1 Jun 2021 6:40 PM Date Created
  • Views 667 views
  • Likes 3 likes
  • Comments 0 comments
  • quantum
  • qubit
  • processing
  • cabeatwell
  • innovation
Related
Recommended

For the first time, engineers demonstrate two-qubit quantum computing capabilities

Catwell
Catwell
1 Jun 2021

image

Intel and QuTech utilized the Horse Ridge chip to demonstrate two-qubit quantum computing capabilities. The researchers say it could pave the way toward silicon-based quantum computing. (Image Credit: Marieke de Lorijn)

 

Engineers from QuTech in the Netherlands and Intel designed and tested a cryogenic chip that controls qubits operating at very low temperatures. Their design presents new opportunities to solve the "wiring bottleneck," significantly progressing toward a scalable quantum computer.

 

"Our research results, driven in partnership with QuTech, quantitatively prove that our cryogenic controller, Horse Ridge, can achieve the same high-fidelity results as room-temperature electronics while controlling multiple silicon qubits. We also successfully demonstrated frequency multiplexing on two qubits using a single cable, which clears the way for simplifying the 'wiring challenge' in quantum computing. Together, these innovations pave the way for fully integrating quantum control chips with the quantum processor in the future, lifting a major roadblock in quantum scaling," says Stefano Pellerano, principal engineer at Intel Labs.

 

A wire individually controls each qubit. "This stands in the way of a scalable quantum computer since millions of qubits would require millions of wires," QuTech's lead investigator, Lieven Vandersypen, says." This is called the 'wiring bottleneck.' In traditional computers, a modern processor with billions of transistors has only a few thousand connections. The cryogenic temperatures at which qubits operate (20 millikelvin, or about -273 degrees Celsius) complicate the use of traditional solutions." Chips cannot withstand extreme temperatures, leading to a newly designed and tested cryogenic chip.

 

The team designed a special silicon-based integrated circuit that endures temperatures at -454 °F (-270 °C) and addresses qubits. "We exploited the same technology adopted for the conventional microprocessor, the CMOS technology. For Horse Ridge, we specifically used the Intel 22nm low-power FinFET technology." said co-lead investigator Edoardo Charbon, head of EPFL's Advanced Quantum Architecture Laboratory. "As electronic devices operate very differently at cryogenic temperatures, we used special techniques in the chip design both to ensure the right operation and to drive qubits with high accuracy." Diminishing the wiring bottleneck is achieved by integrating a controller chip and qubits on the same die.

 

The team compared the cryogenic Horse Ridge control chip with a traditional room temperature controller to examine its quality. They discovered that the system's gate fidelity, restricted by the qubits and not the controller, reached 99.99%.

The controller's programmability was demonstrated using the Deutsch-Jozsa two-bit quantum algorithm, which is more efficient on a quantum computer than a traditional one. This allows the control chip to be programmed with arbitrary sequences of operations. It also paves the way toward on-chip integration and a scalable quantum computer. 

 

Have a story tip? Message me at: http://twitter.com/Cabe_Atwell

  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube