Chalmers University of Technology researchers have found that large area graphene helps prolong the spin of electrons over longer periods of time (via Chalmers)
Chances are you own a smartphone, tablet or PC/laptop that features some form of solid-state technology - typically in the form of RAM, flash drives or SSD hard drive. Those devices are faster than their mechanical counterparts and new findings by researchers from Sweden’s Chalmers University of Technology are set to make that technology even faster and more energy efficient through the use of graphene.
Specifically, they found that large area graphene is able to prolong the spin of electrons (spintronics) over a longer period of time over that of ferrous metals. Spintronics deals with the intrinsic spin of electrons in a magnetic moment- or the torque it will experience when an external magnetic field is applied. As mentioned above there are already spintronic devices on the market, however they use ferrous metals for their base platform. It’s the impurities in those metals that hold spintronics back from becoming a mainstream component in today’s electronic circuitry- limiting the size of the components themselves.
This is where graphene comes into play as the material extends the area of spintronics from nanometers to millimeters, making the spin of those electrons last longer and travel farther than ever before. So why is that good? Data (in the form of 1’s and 0’s) is encoded onto those electrons as they spin up and spin down rather than relying on the other method of turning the electrical state of off and on using traditional circuits. The problem is as the process nodes become smaller it results in increased electrical ‘bleed’ across transistors in the off state thereby preventing us from building transistors that consume less power.
Using graphene as the substrate for spintronics allows for the electrons to maintain their spin alignment to a duration of 1.2 nanoseconds and transmit information contained in those electrons up to 16-micrometers long without degradation. Of course, progress doesn’t come without its problems- in this case it’s the graphene itself or rather the manufacturing process. Producing large sheets of the one-atom thick substance is still an issue for manufacturers and when it’s produced it usually has defects in terms of wrinkles and roughness, which can have negative effects on electron’s spin rate and decay.
The researchers however have found that the CVD (Chemical Vapor Deposition) method is promising and the team hopes to capitalize on it to produce a logical component in the short term with a long-term goal of producing graphene/spintronic-based components that will surpass solid-state devices in both speed and energy efficiency.
See more news at: