element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Embedded and Microcontrollers
  • Technologies
  • More
Embedded and Microcontrollers
Blog MIT Researchers Developing Programmable Bacteria
  • Blog
  • Forum
  • Documents
  • Quiz
  • Polls
  • Files
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Embedded and Microcontrollers to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: Catwell
  • Date Created: 27 Jun 2016 7:58 PM Date Created
  • Views 369 views
  • Likes 0 likes
  • Comments 1 comment
  • mit
  • bacteria
  • life
  • on_campus
  • embedded
  • cabeatwell
  • living circuit
  • university
  • innovation
Related
Recommended

MIT Researchers Developing Programmable Bacteria

Catwell
Catwell
27 Jun 2016

image

Segments of DNA can perform basic computing functions (NAND), and code the answer by emitting green flourescent protein (GFP) (image via Nature)

 

What happens when the world runs out of silicon? Biological circuits could replace minerals as storehouses of computing power. So far, it’s been much easier to store lots of information using DNA and programming that allows translation between DNA and binary code. What if cells could be programmed to activate certain genes? With the ongoing developments of analogue and digital programming in microbes, that may well happen soon thanks to an effort by MIT.

 

That takes some tinkering, though, because silicon circuits are much easier to design and many more transistors can be packed onto a chunk of silicon than within a single cell. But we’re working on it! So far, researchers at MIT have developed biological circuitry which allows a cell to convert analogue signals into digital ones, with a range of responses. A cell could detect the concentration of acid in the stomach, for example, which triggers different responses based on the intensity of the stimulus. Essentially, the living circuit is composed of a threshold module, which detects a range of analogue signals, and subsequently controls the expression of a recombinase gene, which is turned on or off by inverting it.

 

Expression of the gene regulates the response of the cell to the stimulus. A bacterium could be designed to detect a range of acid concentration, and respond within a certain preprogrammed range using this circuit design.

 

What kind of stimuli would a bacterial circuit be used for? Current investigations underway are to detect the levels of inflammation in the body, levels of glucose in the blood, and treat diseases of the gut with specially designed probiotics. Microbes are already used to produce medically important substances, such as penicillin and morphine. The gene circuitry under development would allow a microbe to produce insulin only in the presence of high blood glucose, for example, which could potentially change medicine in a powerful way.

 

Unlike silicon computer chips, however, microbes reproduce and exchange genes with each other. Engineering microbes to respond to environmental challenges could unleash a host of unforeseen consequences.

 

Have a story tip? Message me at:

http://twitter.com/Cabe_Atwell

  • Sign in to reply
  • clem57
    clem57 over 8 years ago

    The last paragraph says it all.

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube