Standford and DOE researchers have created super-thin wires just three atoms wide using diamonds and assembling them Lego-style. (via Standford)
Researchers from Stanford University and the Department of Energy (DOE) have developed a way to use diamonds- tiny bits of diamonds, to create a wire that is only three atoms wide. The wires have the potential to be used in all sorts of applications, including electricity-generating fabrics, optoelectronic devices and crazy superconducting materials that won’t bleed electricity.
What’s more, the building process of the wires requires a new Lego-like assembling technique and begins with attaching a single sulfur atom to a small diamondoid (nano-diamond or carbon cage molecule), which is then dropped into a solution where the sulfur atom bonds with a copper ion. The bonding doesn’t stop there, as diamondoids (in this case adamantane) are extremely attracted to each other through what is known as van der Waals forces- the same force that allows geckos to stick to walls.
In the diamondoid’s case, the force makes them clump together similar to sugar crystals and as you might have guessed, self-assemble to create a wire structure, complete with a copper-ion core. Stanford grad student Fei Hua Li (the mind behind figuring out the diamondoid’s attractive properties) explains it this way- “Much like LEGO blocks, they only fit together in certain ways that are determined by their size and shape.” He went on to say, “The copper and sulfur atoms of each building block wound up in the middle, forming the conductive core of the wire, and the bulkier diamondoids wound up on the outside, forming the insulating shell.”
The basic building block of the nano-wire shows the copper/sulfur center being self-assembled by the attracting diamondoid outer shell.
Beyond using copper-ion based wires, the researchers also created them using other metals such as cadmium, zinc, iron and silver- all created using different solutions and with different cage molecules. What’s interesting is that each different build had similar material properties to some of those used in today’s technological applications.
For instance, the cadmium-based nano-wires had similar material properties to those used in optoelectronics such as LEDs, while the zinc-based wires are similar to those found in some solar panels and piezoelectric generators. The possibilities of using these wires for creating a host of new materials with electrical properties are almost endless, their development is still in its infancy but considering that they have virtually no electrical bleed, it will be exciting to see what they can be adapted for beyond just efficient electronics.
Have a story tip? Message me at: cabe(at)element14(dot)com
http://twitter.com/Cabe_Atwell