Researchers at Switzerland’s ETH Zurich successfully made the world’s smallest optical network switch. At one-atom in size, it may revolutionize network infrastructure in only a few years’ time. (via ETH)
In order to keep up with the increasing rate of data transmission, a team of Swiss researchers at ETH Zurich recently developed the world’s smallest optical network switch. It measures on the atomic scale and is actually smaller than the wavelength of light needed to operate it. The research may revolutionize data transmission in only a few years’ time by allowing for the development of the most powerful network infrastructure to date.
According to a paper published by the research team, data transmission on mobile and wire-based platforms continues to soar at incredible rates – 23% and 57% respectively each year. Current operational network switches vary from a few centimeters to a few inches in width, and if rates of data transmission continue to rise, network infrastructure must become physically expansive to keep up. For that reason, researchers at Switzerland’s ETH Zurich tried to make at optical network switch that could make for a more powerful, yet smaller, machine.
ETH Professor of Photonics and Communications Jürg Leuthold led the research team, and Senior Scientist Alexandros Emboras was largely responsible for the design that made the successful development of the switch possible. Emboras discovered that by placing a silicon membrane between a small pad made of silver, and another small pad made of platinum, he could manipulate atoms with wavelengths of light at low frequencies.
The modulator functions by keeping enough space – a few nanometers – between the small pads, and feeding wavelengths of light from an optical fiber through the small crevice. The light acts as a surface plasmon, which enables the transfer of energy to individual atoms on the metallic surfaces. These atoms begin moving at the speed of the light itself, and if the atoms enter the space between the two metallic pads, a short circuit is created through which data may be transmitted.
By controlling the flow of light through the optical fiber, Emboras was able to control the atoms, which acted as an on or off switch to the optical network circuit. By monitoring the activity on a highly specialized computer, team member and ETH Professor Mathieu Luisier was able to confirm the switch was activated by a single atom, making it both the smallest ever optical network switch, and the smallest possible switch at a single atom.
The discovery is revolutionary for a number of reasons. Its size allows for the development of smaller, more powerful network infrastructure that can sustain the rapid growth of data transmission. With this, it also provides a truly digital signal (a one or a zero), allowing the switch to also act as a transistor. It is a significant accomplishment for the information sciences.
Unfortunately, the switch is not ready for commercialization yet. Currently, it only exhibits a 17% success rate, and is only able to transmit data at megahertz frequencies. Researchers plan to continue their efforts and expect to present a practical, potentially marketable solution within the next few years.
Have a story tip? Message me at: