element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet & Tria Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • About Us
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      • Japan
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Vietnam
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Industrial Automation
  • Technologies
  • More
Industrial Automation
Blog Researchers Develop Global Metric to Design Dexterous Robots
  • Blog
  • Forum
  • Documents
  • Quiz
  • Events
  • Polls
  • Files
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Industrial Automation to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: Catwell
  • Date Created: 19 Jul 2023 3:51 PM Date Created
  • Views 465 views
  • Likes 4 likes
  • Comments 0 comments
  • robotics
  • robot
  • on_campus
  • cabeatwell
  • university
  • global metric
  • standard
Related
Recommended

Researchers Develop Global Metric to Design Dexterous Robots

Catwell
Catwell
19 Jul 2023

image

Researchers designed an application that defines the reachability and dexterity of eye surgery robots. (Image Credit: Unsplash)

Researchers from University College London (UCL), Kings College London (KCL), and Moorfields Eye Hospital have partnered up to design an application defining the reachability and dexterity of robots involved in eye surgery. In addition, they unveiled a global metric that makes it possible to compare continuum robots quantitatively.

"While we already have good algorithms for the reachability of robots that explain how long, stiff or bendy a robot should be to reach specific locations, there has been no work on designing robots for dexterity, in other words, for reaching a specific point but under every orientation possible," said Dr Christos Bergeles.

Continuum robots flex, change shape to avoid important anatomical areas, replicate the movement of an elephant's trunk, and imitate a human hand's dexterity by controlling their tip's position and orientation. They can also reach an eye's bottom region for transplanting retinal cells in place of those that sustained damage, helping to enhance the surgeon's dexterity.

The techniques discussed in the paper are being used by Dr. Bergeles to build micro-surgical robots that present "opportunities beyond conventional surgery." His goal involves implementing the design algorithm into eye surgery robots via a new collaborative project from UCL, KCL, and Moorfield.

"The developed systems will revitalize surgery by improving practice and patient outcomes, supporting the vision of sight restoration, and presenting evidence for the role of new smart instrumentation technologies in the operating room," said Dr. Bergeles.

Have a story tip? Message me at: http://twitter.com/Cabe_Atwell

  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2026 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube