element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • About Us
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Industrial Automation
  • Technologies
  • More
Industrial Automation
Documents The Basics of Piezoresisitive and Foil-Based Pressure Sensors
  • Blog
  • Forum
  • Documents
  • Quiz
  • Events
  • Polls
  • Files
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Industrial Automation to participate - click to join for free!
Actions
  • Share
  • More
  • Cancel
Engagement
  • Author Author: rscasny
  • Date Created: 24 Aug 2016 10:53 PM Date Created
  • Last Updated Last Updated: 24 Aug 2016 10:55 PM
  • Views 1401 views
  • Likes 2 likes
  • Comments 0 comments
Related
Recommended

The Basics of Piezoresisitive and Foil-Based Pressure Sensors

Pressure is the force per unit area exerted by a fluid or gas. The recognized International System of Units (SI) for pressure measurement is the Pascal (Pa); however, pounds per square inch (psi), inches  f water (in-H2O), Newtons per millimeter squared (N/mm2) and Bar are also common. The most critical mechanical component in any pressure transducer is generally the pressure sensing structure (spring element). The pressure of the fluid or gas is a force on the pressure sensing structure. The function of the structure is to serve as the reaction for this applied force; and, in doing so, to focus the effect of the force into an isolated uniform strain field where strain gages can be placed for pressure measurement. While there are various types of pressure sensing technologies, two will be discussed in this paper: Piezoresistive-Type Pressure and Foil-Based Pressure.

Piezoresistive-Type Pressure Sensorsimage

In piezoresistive-type pressure sensors, the transduction elements, which convert the stress from the diaphragm deflection into an electrical signal, are called piezoresistors. Piezoresistance equals changing electrical resistance due to mechanical stress. The pressure sensing element is a diaphragm which is made from silicon. This silicon diaphragm is attached to a glass substructure (i.e., that acts as a constraint/mounting structure for the silicon). This silicon diaphragm structure performs in a predictable and repeatable manner as the pressure is applied (i.e., a very slight deflection in the structure). This pressure is translated into a signal voltage by the resistance change of the strain gages which are doped (i.e., implanted) onto the silicon diaphragm surface, then organized in an electrical circuit.image

 

The silicon diaphragm, with the exposed doped Wheatstone Bridge, in test and measurement pressure sensors, is isolated from the pressure media being measured (i.e., media isolated pressure sensors). This is achieved by creating a cavity between the media being measured and the silicon diaphragm, then filling it with oil that does not attack the silicon or electrical circuit. On the opposite side of the cavity is a metal/steel diaphragm that is flexible to transmit the pressure being measured to the oil in the cavity, and the silicon diaphragm. This metal/steel diaphragm is called the isolating diaphragm.

 

At a very top level, this technology can be described as a pressure sensor consisting of a micro-machined silicon diaphragm with piezoresistive strain gages diffused into it, fused to a silicon or glass back plate. Pressure induced strain increases or decreases the value of the resistors (i.e., strain gages). This resistance change can be as high as 30 %, that typically yields one of the higher outputs from a pressure sensing technology. The resistors are connected as a Wheatstone Bridge, and the output of which is directly proportional to the pressure.

Foil-Based Pressure Sensorsimage

Another common type of pressure sensor utilizes a bonded foil strain gage to measure an applied pressure in one of two ways. In some models, such as miniature pressure sensors, foil strain gages are bonded to the back of a steel diaphragm that is exposed to the media being measured. The diaphragm structure performs in a predictable and repeatable manner as the pressure is applied (i.e., a very slight deflection in the structure). This pressure is translated into a signal voltage by the resistance change of the strain gages, arranged strategically around the diaphragm surface, and is organized in an electrical circuit.

 

image

image

However, in many other models, the foil strain gages are bonded to an element that is mechanically connected to a diaphragm, then exposed to the media being measured. The strain gaged element is measuring the force transmitted from the diaphragm by the mechanical linkage. This element acts as a load cell (i.e., designed to measure force that is directly proportional to the load applied to the diaphragm).

 

To learn more about Piezoresistive and Foil-Based Pressure Sensors, please download the attached document by Honeywell Sensing and Control called "Effectively Using Pressure, Load, and Torque Sensors with Today’s Data Acquisition Systems," which was the source of information for this document.

image

Attachments:
imageWhite_Paper_EffectivelyUsingPressureLoadandTorqueSensorswithTodaysDataAcqusitionSystems_008883-2-EN.pdf
  • hscdann010bgaa5
  • mechanical stress
  • piezoresistive pressure sensors
  • 90r7899
  • 29y6981
  • foil-based pressure sensors
  • honeywell
  • strain gages
  • bonded foil strain gage
  • pressure transducers
  • 060-0743-11tjg
  • silicon diaphragm
  • wheatston bridge
  • Share
  • History
  • More
  • Cancel
  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube