Introduction
In the course of doing the Simple Music Maker I experimented with a few other odds and ends, both as real prototypes on a
breadboard and messing around with the simulator. Here's one of them. I'll blog about a couple of the others, too. These
aren't complete projects, just a bit of tinkering and trying things out, but they may be of interest for all that.
When I was in my teens and first developed an interest in electronics, one of the projects I built back then was a simple
electronic organ. The oscillator was based on an unusual kind of transistor called a unijunction transistor. It was unusual
because it had a single junction, with an emitter, two base connections and no collector. Nowadays, you can't seem to buy
new unijunction transistors, and old ones sell for a lot of money, but you can buy a replacement called a 'programmable
unijunction transistor' so I'm gong to try using one of those. This modern part isn't really a single-junction device at
all, instead it's a 4-layer structure like an SCR with two external resistors needed to define the trigger point (hence the
'programmable' in the name), but it should behave in a similar way and allow me to design an oscillator that will run at
audio frequencies.
The Device
The device I'm going to use is the 2N6027 from On Semi. This is readily available and not too expensive. Here is how it is
arranged to mimic the kind of unijunction device I used back then.
The characteristic of the device that allows for oscillation is a region of negative resistance. This is how it is shown in
an old book for a real unijunction part [1]
Once the trigger point is reached (by the emitter), the voltage decreases as the current increases. This characteristic is
very similar to that of a neon bulb (which can also be the basis of a simple oscillator if combined with a resistor and
capacitor), though the physics is obviously somewhat different.
If we connect the device to an RC circuit, the capacitor will charge to the trigger voltage, discharge until there's no
longer enough current to keep the device active, and repeat the cycle. [In practice, it's slightly more complicated than
that, because the dynamic load-line doesn't meekly follow the curve down, rather the capacitor holds the voltage up and the
dynamic load-line swings out and back again.]
Practical Experiment
So let's try that on a breadboard.
Here's the circuit and the constructed circuit:
This is the voltage across the capacitor (yellow trace). The frequency is approximately 360Hz:
Here's the voltage across the 47R (blue trace) when it's discharging the capacitor:
Simple Music Maker?
So the next question was: how can I turn this into the simplest possible instrument? I wondered about adding a follower, to
buffer the capacitor voltage, but was there anywhere in the circuit that might drive a 40 Ohm loudspeaker? The timing
circuit was out, but the resistance that I'd used from the cathode to ground was 47R, so why not try there? It's a stupid
idea really - the discharge only lasts for a microsecond - so I had to try it and it actually works; dumping the energy
from the capacitor into the loudspeaker coil at an audio repetition rate sounds a note. It's quiet, but it did mean I could
make a very, very simple electronic organ with just one active device (hurrah!).
I did, briefly, have a go at doing that, with a selection of resistors to give different notes. But I gave up after I got
to five notes - in something that might, possibly, have approximated a pentatonic scale - because it was such a hassle
determining the values. Next up would have been a buffer and an amplifier for the speaker, but I'd gone back to the Music
Box at that stage and didn't get any further, so it remains a curiosity to blog about and not a project. Which suits me
nicely.
And, since I called this Uni-Tunes, I had better end by saying: That's All Folks!
[1] Handbook of Linear Integrated Electronics for Research. T.D.S. Hamilton. McGraw-Hill 1977.
Top Comments