element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet & Tria Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • About Us
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Freedom development platform
  • Products
  • Dev Tools
  • Freedom development platform
  • More
  • Cancel
Freedom development platform
Blog [FRDM-KL05Z + KDS + PE + Mikroe Click SHT11] Tutorial: Display temperature and humidity data on hyperterminal
  • Blog
  • Forum
  • Documents
  • Files
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Freedom development platform to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: bheemarao
  • Date Created: 20 Mar 2015 9:25 AM Date Created
  • Views 641 views
  • Likes 0 likes
  • Comments 1 comment
  • sht1x
  • click-board
  • bit_banging
  • frdm-kl05z
Related
Recommended

[FRDM-KL05Z + KDS + PE + Mikroe Click SHT11] Tutorial: Display temperature and humidity data on hyperterminal

bheemarao
bheemarao
20 Mar 2015

Here is a project created to interface SHT11 click module (humidity and temperature sensor) with FRDM-KL05Z freedom board.


Before we start this project below are the pre-requisites:

  1. KDS software tool from Freescale
  2. FRDM-KL05Z Freedom development board
  3. FRDM-K64F click shield / Arduino UNO click shield [MIKROE-1581] (optional)
  4. SHT1x click module [MIKROE-949]


SHT11 details:

http://www.mikroe.com/click/sht1x/

 

SHT11 Click is an accessory board in mikroBusTm form factor. It includes a digital humidity and temperature sensor SHT11. A unique capacitive sensor element is used to measure relative humidity while the temperature is measured by a band-gap sensor. Serial I2C interface and factory calibration, allow easy and fast system integration. Board is set to use 3.3V power supply by default.

 

image

 

Communication with the SHT11 sensor is done using I2C interface. Temperature can be represented in 12-bit or 14-bit format in operating range from -40 to +100°C with accuracy of +/- 0.5°C at room temperature. Humidity can be represented in 8-bit or 12-bit resolution with +/- 3% accuracy.


The schematic of the click board is as shown below:


image

 

So let me start from creating the new project:

image

 

Create a New KDS project name as shown, i have selected “KL05_SHT11x”

image

Next select the device: you have 2 options for selecting it, one is by “Boards” and other is by “Processors” i am selecting it from the “Processors” option as shown below:

 

image

 

Select processor part number present on the board FRDM-KL05Z (“MKL05Z32VLF4” ) and proceed further.

Make the selection of processor expert in standalone as shown below:


image

Click finish to proceed further.


Now we will proceed further by adding our components: as we are implementing the I2C logic using Bit Banging we need only 2 bits for SDA/SCL which can act as both input and output by software logic.

The required components are as follows:


  1. BitIO_LDD:  for SDA bit I/O
  2. BitIO_LDD:  for SCL bit I/O
  3. Wait:
  4. ConsoleIO: for hyper terminal output


Select component library and select BitIO_LDD component as shown below:

image

Add this component two times as we require 2 Bits for SDA and SCL interface signal

Now rename the component Bit1 IO as SDA as shown below:


image

Now select the pin for I/O in our case the SDA bit is connected to PTA-9 of the freedom board


image

And make the other selections as shown below: make sure auto initialisation is check on.

image

Similarly connect Bit2 component as shown below:

Rename it as SCL and connected to PTB-13

image

Now add the component “Wait” as shown below:

image

Next add the ConsoleIO component module from component library as shown below:

 

image

 

Double click on the module component to add to our project: As UART0’s RX is connected to PTB2 and UART0’s TX is connected to PTB1.

This UART port pins are required for console terminal output.


Next click on ConsoleIO_Serial_LDD button as shown below:

image

We have configured UART0 as shown below:

UART0 RxD connected to PTB-2 as shown below:

 

image

 

UART0 TxD connected to PTB1 as shown below:

 

image

 

And the baud rate is selected to 115200 as shown below:


image

 

We can see all the four components added with required settings as shown below:

 

image

Now generate the project by clicking the below shown button

 

image

 

It Builds with no errors as shown below:


image

Now we are going to add our code in “main.c” file



int main(void)

/*lint -restore Enable MISRA rule (6.3) checking. */

{

/* Write your local variable definition here */

 

/*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/

PE_low_level_init();

/*** End of Processor Expert internal initialization.                    ***/

 

/* Write your code here */

/* For example: for(;;) { } */

 

unsigned int *p_value1, *p_value2;

SDA_Init(SDA_Ptr);

SCL_Init(SCL_Ptr);

 

 

while(1){

 

      Read_SHT11(&temp, &rel_hum);

      WAIT1_Waitms(250);

        printf(" Temperature value T: %f %% degC\t", temp);

        printf(" Humidity value RH: %f pct\r\n", rel_hum);

 

      }

}


void s_transstart()

{

//Initial state

SDA_SetDir(SDA_Ptr, 0); //SDA_SetDir(SDA_Ptr, 1); //set as output// SDA_dir = 1;                            //release DATA-line

SDA_SetVal(SDA_Ptr);  // giving high to the bit// SDA_pin = 1;

SCL_ClrVal(SCL_Ptr);  // giving 0 to the bit//SCL_pin = 0;                          // SCL Low

 

WAIT1_Waitus(1);  //Delay_uS(1);

SCL_SetVal(SCL_Ptr);  // giving high to the bit // SCL_pin = 1;

WAIT1_Waitus(1);//Delay_uS(1);

 

SDA_SetDir(SDA_Ptr, 1); //set as output //SDA_dir = 0;  // define SDA as output

SDA_ClrVal(SDA_Ptr);  //SDA_pin = 0;                          // SDA low

WAIT1_Waitus(1); //Delay_uS(1);

 

SCL_ClrVal(SCL_Ptr); //SCL_pin = 0;

WAIT1_Waitus(3);      // Delay_uS(3);

SCL_SetVal(SCL_Ptr);  //SCL_pin = 1;

 

WAIT1_Waitus(1); //Delay_uS(1);

SDA_SetDir(SDA_Ptr, 0); //SDA_dir = 1;

WAIT1_Waitus(1);    //Delay_uS(1);

SCL_ClrVal(SCL_Ptr); //SCL_pin = 0;

}

 

 

unsigned char s_read_byte(unsigned char ack)

{

unsigned char i=0x80;

unsigned char val=0;

 

//Initial state

SDA_SetDir(SDA_Ptr, 1); //release DATA-line

SDA_SetVal(SDA_Ptr);

SCL_ClrVal(SCL_Ptr); // SCL Low

 

while(i)                //shift bit for masking

{

SCL_SetVal(SCL_Ptr); //clk for SENSI-BUS

SDA_SetDir(SDA_Ptr, 0); //input mode  added

WAIT1_Waitus(1);     // Delay_uS(1);

if (SDA_GetVal(SDA_Ptr) == 1)

{

val=(val | i);      //read bit

}

SCL_ClrVal(SCL_Ptr);

WAIT1_Waitus(1); //Delay_uS(1);

i=(i>>1);

}

 

SDA_SetDir(SDA_Ptr, 1);

 

if (ack)

{

//in case of "ack==1" pull down DATA-Line

SDA_ClrVal(SDA_Ptr);

}

else

{

SDA_SetVal(SDA_Ptr);

}

 

SCL_SetVal(SCL_Ptr); //clk #9 for ack

WAIT1_Waitus(3);   //Delay_uS(3);

SCL_ClrVal(SCL_Ptr);

WAIT1_Waitus(1);   // Delay_uS(1);

 

SDA_SetDir(SDA_Ptr, 1);                           //release DATA-line

SDA_SetVal(SDA_Ptr);

return (val);

}

 

 

unsigned char s_write_byte(unsigned char value)

{

unsigned char i=0x80;

unsigned char error=0;

 

SDA_SetDir(SDA_Ptr, 1);

 

while(i)

{ //shift bit for masking

if (i & value)

{

SDA_SetVal(SDA_Ptr);    //masking value with i , write to SENSI-BUS

}

else

{

SDA_ClrVal(SDA_Ptr);

}

 

SCL_SetVal(SCL_Ptr);  //clk for SENSI-BUS

WAIT1_Waitus(3); //Delay_uS(3);

SCL_ClrVal(SCL_Ptr);

WAIT1_Waitus(3); //Delay_uS(3);

i=(i>>1);

}

 

SDA_SetDir(SDA_Ptr, 1);                          //release DATA-line

SDA_SetVal(SDA_Ptr);

 

SCL_SetVal(SCL_Ptr);                          //clk #9 for ack

WAIT1_Waitus(3);        //Delay_uS(3);

SDA_SetDir(SDA_Ptr, 0); //added input mode

 

if (SDA_GetVal(SDA_Ptr) == 1) error = 1; //check ack (DATA will be pulled down by SHT11)

WAIT1_Waitus(1);        //Delay_uS(1);

SCL_ClrVal(SCL_Ptr);

 

return(error); //error=1 in case of no acknowledge

}

 

 

unsigned char s_measure(unsigned int *p_value, unsigned char mode)

{

unsigned char i=0;

unsigned char msb,lsb;

unsigned char checksum;

 

*p_value=0;

s_transstart(); //transmission start

 

if(mode)

{

mode = MEASURE_HUMI;

}

else

{

mode = MEASURE_TEMP;

}

 

if (s_write_byte(mode)) return(1);

// normal delays: temp i=70, humi i=20

 

SDA_SetDir(SDA_Ptr, 0);  // SDA_dir = 1;

 

while(i<240)

{

WAIT1_Waitms(1);

WAIT1_Waitms(1);

WAIT1_Waitms(1);

if (SDA_GetVal(SDA_Ptr) == 0)

{

i=0;

break;

}

i++;

}

 

// or timeout

if(i) return(2);

 

msb=s_read_byte(ACK); //read the first byte (MSB)

lsb=s_read_byte(ACK); //read the second byte (LSB)

checksum=s_read_byte(noACK);                //read checksum (8-bit)

 

*p_value=(msb<<8)|(lsb);

 

return(0);

}

 

float calc_sth11_temp(unsigned int t)

{

float t_out;

t_out =  t*0.01 - 40;

return t_out;

}

 

float calc_sth11_humi(unsigned int h, int t)

{

float rh_lin; // rh_lin:  Humidity linear

float rh_true; // rh_true: Temperature compensated humidity

float t_C;                // t_C  : Temperature [°C]

 

t_C=t*0.01 - 40; //calc. temperature from ticks to [°C]

rh_lin=C3*h*h + C2*h + C1; //calc. humidity from ticks to [%RH]

rh_true=(t_C-25)*(T1+T2*h)+rh_lin; //calc. temperature compensated humidity

 

// now calc. Temperature compensated humidity [%RH]

// the correct formula is:

// rh_true=(t/10-25)*(0.01+0.00008*(sensor_val))+rh;

// sensor_val ~= rh*30

// we use:

// rh_true=(t/10-25) * 1/8;

 

if(rh_true>100)rh_true=100;              //cut if the value is outside of

if(rh_true<0.1)rh_true=0.1;              //the physical possible range

 

return rh_true;

}

 

void Read_SHT11(float *fT, float *fRH)

{

unsigned int t;

unsigned int h;

 

float value=0;

ucSens_Error = 0;

 

ucSens_Error = s_measure(&t, 0);

*fT = calc_sth11_temp(t);

ucSens_Error = s_measure(&h, 1);

*fRH = calc_sth11_humi(h, t);

 

 

}

 

char s_read_statusreg(unsigned char *p_value)

{

unsigned char checksum = 0;

 

s_transstart();                            //transmission start

if(s_write_byte(STATUS_REG_R)) return 1;    //send command to sensor

*p_value=s_read_byte(ACK);                  //read status register (8-bit)

checksum=s_read_byte(noACK);                //read checksum (8-bit)

 

return 0;

}

 

 

char s_write_statusreg(unsigned char value)

{

s_transstart();                            //transmission start

if(s_write_byte(STATUS_REG_W)) return 1;    //send command to sensor

if(s_write_byte(value)) return 1;          //send value of status register

 

return 0;

}

 

void s_connectionreset()

{

unsigned char i;

 

//Initial state

SDA_SetDir(SDA_Ptr, 1);                            //release DATA-line

SDA_SetVal(SDA_Ptr);

SCL_ClrVal(SCL_Ptr);                          // SCL Low

 

for(i=0; i<9; i++) //9 SCK cycles

{

SCL_SetVal(SCL_Ptr);

WAIT1_Waitus(3);

SCL_ClrVal(SCL_Ptr);

WAIT1_Waitus(3);

}

 

s_transstart(); //transmission start

}

 

 

unsigned char s_softreset(void)

{

s_connectionreset();                        //reset communication

//send RESET-command to sensor

return (s_write_byte(RESET));                //return=1 in case of no response form the sensor

}


Explanation of code:

The below are the function/driver required for this code:

 

  • void s_transstart()
  • unsigned char s_read_byte(unsigned char ack)
  • unsigned char s_write_byte(unsigned char value)
  • unsigned char s_measure(unsigned int *p_value, unsigned char mode)
  • float calc_sth11_temp(unsigned int t)
  • float calc_sth11_humi(unsigned int h, int t)
  • void Read_SHT11(float *fT, float *fRH)
  • char s_read_statusreg(unsigned char *p_value)
  • char s_write_statusreg(unsigned char value)
  • void s_connectionreset()
  • unsigned char s_softreset(void)

 

 

Inside main we are calling the function Read_SHT11() which in turn returns the temperature and humidity values

 

The function “calc_sth11_temp()” will generate the required I2C signals by Bit Banging method i.e it simulates the signal without using the internal resource.

and gives you the temperature value.

 

The function ”calc_sth11_humi()” will generate the necessary I2C signal (Bit Banging) and get the humidity value.

 

For more details on timing signal refer to the SHT11 datasheet:

http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf

 

Note: as we are printing floating point sensor data we need to set up KDS to print floating numbers


Right click on project folder and select the properties and do the settings as shown below:


We need to add “-nanolibc -u _printf_float” in “Tool settings” as shown below:


image


Now it’s time to build the project, click on the hammer button as shown


image

You can see the build is finished successfully with no errors


image

 

Now it is ready to debug/execute


Now connect the KL05Z board to OPEN SDA port to your computer through USB cable. The hardware setup is as shown below, the click board is connected via click shield


image


Make sure you have downloaded the OpenSDA debug driver for the FRDM-KL05Z board

“MSD-DEBUG-FRDM-KL05Z_Pemicro_v114.SDA”


(you can download the driver from PE micro website link: http://www.pemicro.com/opensda/index.cfm)


Now configure for debugging the project:


image

Click on Debug configuration as shown below:


image

 

Now click on Apply and Debug

You can see below Debug window screen

 

image

 

Identify your hyperterminal port umber from Device manager as shown below:

In my case it is connected to COM52 port

 

image

 

Now open hyperterminal window of your choice, i am opening it from putty terminal

 

image

Now click on green ‘Resume’ button

 

image

The output seen in the terminal is as shown below:

 

 

image

 

I have enclosed the *.SREC file, you can download this and test it directly by programming the binaries.

And also the project folder for your quick reference.

 

Happy SHT11 click interfacing on KL05Z  image  image  image

Attachments:
KL05_SHT11x.rar
KL05_SHT11x.srec.rar
  • Sign in to reply
  • mcb1
    mcb1 over 10 years ago

    Another very detailed guide that I've bookmarked for later.

     

    Thanks

    Mark

    • Cancel
    • Vote Up 0 Vote Down
    • Sign in to reply
    • More
    • Cancel
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube