element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • About Us
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
IQD Frequency Products
  • Products
  • Manufacturers
  • IQD Frequency Products
  • More
  • Cancel
IQD Frequency Products
Blog CMOS vs HCMOS vs ACMOS – A History Lesson in Oscillators
  • Blog
  • Forum
  • Documents
  • Events
  • Polls
  • Files
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join IQD Frequency Products to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: IQD-Frequency
  • Date Created: 22 Jul 2024 1:42 PM Date Created
  • Views 405 views
  • Likes 2 likes
  • Comments 0 comments
  • crystal
  • oscillator
  • cmos
  • frequency
Related
Recommended

CMOS vs HCMOS vs ACMOS – A History Lesson in Oscillators

IQD-Frequency
IQD-Frequency
22 Jul 2024

Unlocking the secrets of crystal oscillator technology, this blog aims to clarify the differences between CMOS, HCMOS, and ACMOS, unraveling the unique characteristics that make each a distinctive player in the world of electronic circuits.

CMOS (Complementary Metal Oxide Semiconductor) first came about in 1963, and essentially replaced TTL Technology (Transistor Transistor Logic). The problem with TTL Logic was that it took power to hold a line high. Whereas CMOS uses virtually no power to hold a high or low state (although it is slower to operate); power is instead consumed when switching between the states. In an oscillator, the output is high for half the cycle and low for the other half, meaning for any 1 second, it is high for only 0.5 seconds. In reality, the output switches from high to low and back twice for every clock cycle, that means a 26MHz oscillator switches 42million times a second.

CMOS vs TTL

By the 1990’s CMOS had replaced TTL as the most common form of logic and TTL was obviously going to become obsolete. Along the journey to its dominance, CMOS went through a few iterations. Firstly, HCMOS, the High Speed version, and ACMOS, the Advance version. Additionally, back in the 90’s the most common supply voltage was still 5V, but 3.3V was the new future (a bit like 1.8V is today), and this inevitably led to Low Voltage CMOS, LVCMOS.

Back then, it was important to differentiate between these different CMOS types because they all had different voltage levels, different switching speeds, and they could drive different amounts of power to the input of the next device. Therefore, a design engineer had to match the output of an oscillator to the input of the next stage of their product. Thankfully, the world is simpler now. Everything is compatible and they can all be classed as just CMOS; It’s no longer helpful to differentiate between all the different options. For that reason we just say “CMOS output” and avoid any confusion.

Of course, life would be simple if CMOS was the only output option… However, alternatives to exist: for single output oscillators this includes: clipped sine wave or sine wave, and for dual output oscillators: LVPECL, LVDS or occasionally HSCL. That’s another article…

Nick Amey, Technical Director, IQD Frequency Products

  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube