element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet & Tria Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • About Us
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      • Japan
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Vietnam
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Robotics
  • Technologies
  • More
Robotics
Blog MIT and Boston Dynamics create a squish robot
  • Blog
  • Forum
  • Documents
  • Quiz
  • Events
  • Polls
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Robotics to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: Catwell
  • Date Created: 28 Jul 2014 8:54 PM Date Created
  • Views 812 views
  • Likes 1 like
  • Comments 0 comments
  • materials
  • mit
  • robotics
  • robot
  • on_campus
  • 3d_printing
  • cabeatwell
  • learning
  • university
Related
Recommended

MIT and Boston Dynamics create a squish robot

Catwell
Catwell
28 Jul 2014

image

A prototype of this ‘squishy’ robot made with phase-changing materials (via MIT)


MIT and Google’s Boston Dynamic have collaborated to solve one of the age-old issues in robotic mechanics by inventing a new material. While robots are typically either created to be soft or hard, this robot can actually shift from soft or hard states to accommodate the task it need to complete. The real world applications of this are various, but it is of particular interest to the Medical field. A robot which could shift from a hard to soft state could offer novel ways of performing computer assisted operations in hard to reach places. Some speculate that the robot could also find survivors within the rubble of natural disasters and rescue them by squishing itself to fit within the cracks.

 

The squishable structure is created by a combination of foam, wax, and metal wiring. The inside of the tubing is made of foam which can squish and condense to a fraction of it’s size. The foam is coated with wax which allows the robot to become hard or soft depending upon whether it is heated or cooled. There are wires running along each of the foam struts which allows the user to control the phase-state of the material by heating or cooling the wax. A heated state will allow the robot to squish and become more pliable. However, the wax can be cooled to harden the structure. The material is supposed to heal itself in the event that the wax coating breaks. If the user breaks the coating, they can simple heat up the structure, and it should repair the coating.

 

Since the main ingredients of this structure are polyurethane foam and wax, it is surprisingly low cost so robot enthusiasts and scientists alike can create novel squishy robots to their hearts’ content.

 

This material is still undergoing further research and prototyping, but it looks promising. The team is still looking into other methods of creating phase-changing robots by using electromagnetism and suspended metals. This material can also be used to create realistic casing for humanoid robots.

 

There are lots of ideas in the pipes to work on next, but this new material opens up new avenues in the robotics world.


You don't have permission to edit metadata of this video.
Edit media
x
image
Upload Preview
image

 

C

See more news at:

http://twitter.com/Cabe_Atwell

  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube