element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Members
    Members
    • Achievement Levels
    • Benefits of Membership
    • Feedback and Support
    • Members Area
    • Personal Blogs
    • What's New on element14
  • Learn
    Learn
    • eBooks
    • Learning Center
    • Learning Groups
    • STEM Academy
    • Webinars, Training and Events
  • Technologies
    Technologies
    • 3D Printing
    • Experts & Guidance
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Arduino Projects
    • Design Challenges
    • element14 presents
    • Project14
    • Project Groups
    • Raspberry Pi Projects
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Or choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
Sensors
  • Technologies
  • More
Sensors
Blog Researchers achieve quantum mechanics breakthrough to see objects without viewing them
  • Blog
  • Forum
  • Documents
  • Events
  • Polls
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Sensors requires membership for participation - click to join
Blog Post Actions
  • Subscribe by email
  • More
  • Cancel
  • Share
  • Subscribe by email
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: Catwell
  • Date Created: 10 Jan 2023 7:24 PM Date Created
  • Views 755 views
  • Likes 6 likes
  • Comments 0 comments
  • quantum
  • research
  • on_campus
  • cabeatwell
  • university
  • sensor
  • innovation
Related
Recommended

Researchers achieve quantum mechanics breakthrough to see objects without viewing them

Catwell
Catwell
10 Jan 2023

image

Researchers used quantum coherence to perform interaction-free experiments. (Image Credit: Mikko Raskinen/Aalto University)

Finally observe without influencing?

Aalto University researchers discovered a new and effective technique to perform interaction-free experiments. They used transmon devices, superconductive circuits exhibiting quantum behavior, to find microwave pulses that classical instruments produce. Rather than lasers and optics, the team’s lab focuses on microwaves and superconductors.  

“We had to adapt the concept to the different experimental tools available for superconducting devices. Because of that, we also had to change the standard interaction-free protocol in a crucial way: we added another layer of ‘quantumness’ by using a higher energy level of the transmon. Then, we used the quantum coherence of the resulting three-level system as a resource,” Gheorghe Sorin Paraoanu said.

Quantum coherence describes how an object can occupy two states simultaneously. This complex concept may exist, but it’s delicate and could collapse. Researchers didn’t know if this protocol could work. During experimental tests, they discovered a detection efficiency increase. The team realized the discoveries stayed consistent after double-checking their results and putting their theoretical models together. “We also demonstrated that even very low-power microwave pulses can be detected efficiently using our protocol,” Shruti Dogra said.

Additionally, the experiment proved that quantum devices could achieve results that classical devices cannot reach, a quantum advantage phenomenon. Researchers think that quantum computers loaded with ample qubits could achieve a quantum advantage. However, the latest experiment demonstrates that it can occur through a simpler setup.

“Interaction-free measurements based on the earlier, less effective methodology had already noted applications in various specialized processes such as optical imaging, noise-detection, and cryptographic key distribution. This newer and better method may increase the efficiency of all those processes by a wide margin.”

“In quantum computing, our method could be applied for diagnosing microwave-photon states in certain memory elements. This can be regarded as a highly efficient way of extracting information without disturbing the functioning of the quantum processor,” Paraoanu said.

The team is also using their new technique to explore other “exotic forms of information processing.” This includes counterfactual communication (communication between two parties without transferring physical particles) and counterfactual quantum computing, which involves reaching computational results without operating the computer.

Have a story tip? Message me at: http://twitter.com/Cabe_Atwell

  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2023 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube