element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • About Us
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Sensors
  • Technologies
  • More
Sensors
Sensor Forum Any ideas for low-cost Thermocouple Interfacing methods?
  • Blog
  • Forum
  • Documents
  • Quiz
  • Events
  • Polls
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Sensors to participate - click to join for free!
Actions
  • Share
  • More
  • Cancel
Forum Thread Details
  • Replies 25 replies
  • Subscribers 340 subscribers
  • Views 6470 views
  • Users 0 members are here
  • thermocouple
  • thermistor
Related

Any ideas for low-cost Thermocouple Interfacing methods?

shabaz
shabaz over 3 years ago

Note: See here for a project that resulted from this discussion: BLE EasyTempProbe 

Hi,

Since thermocouple measurement ICs are getting expensive/hard to find, I wished to use a single channel ADC, for thermocouple measurements (actually, I want to use a dual channel ADC for two thermocouples, but it's likely the same problem just doubled!).

The trouble is, the cold end of the thermocouple needs measuring too, and I was thinking of using a thermistor for that because that's easier to obtain (and cheaper) than an IC sensor. In summary, I wished to multiplex a thermistor and a thermocouple.

I've come up with the diagram below so far and wish to use it in an environment where the cold junction might be in the range of -40 to +50 deg C, and the thermocouple might be in the range of -40 to +400 deg C (maybe a Type J thermocouple). I think it will have an error of a few deg C. The ADC is 16-bit, and I likely won't be using the whole range of it. The ADC has a PGA of up to 8X, so it will be set to 8X when measuring the thermocouple.

The main benefit of the proposal below is that it is cheap since it just needs a couple of transistors and a few resistors. I could think of more complex circuits for a more accurate measurement, but it would be nice to see if this is good enough, or if it could be tweaked to be good enough unless anyone has other suggestions.

If it works, this would be a cheap way (under $5, ADC included) to have two thermocouples each with their own compensation, with the drawbacks that accuracy might be a few degrees at best, and no isolation either, unfortunately. 

Any ideas would be gratefully appreciated, since I'm sure I may be missing some great techniques, missing the wood for the trees, etc! Has anyone come across any low-cost methods to do such a thing? Any mistakes I'm making?

image

  • Sign in to reply
  • Cancel

Top Replies

  • michaelkellett
    michaelkellett over 3 years ago +6
    Thinking out loud: Both transistors off, no path on input to 0V so ADC pins 2 and 3 pulled to 3.3V, probably outsiede ADC common mode range. Both transistors on, both sides of thermocouple pulled to…
  • shabaz
    shabaz over 3 years ago +3
    Hi fmilburn (Replying here to remove the comment indent, since I wanted to share some diagrams) I've had a shot at doing it, and was close to giving up since I was seeing huge errors!, but it was…
  • shabaz
    shabaz over 3 years ago +3
    I had a short bit of time to try to prototype this, it is not tested yet. The jumper positions on the left select different resistors, to simulate the thermistor, to be at a temperature of -30, 0, 25 or…
Parents
  • dougw
    dougw over 3 years ago

    Could you use a microcontroller with built-in temperature sensor to avoid the thermistor for the cold junction? TI might even have an MCU with 16 bit A/D and internal temp sensor.

    • Cancel
    • Vote Up +1 Vote Down
    • Sign in to reply
    • Cancel
  • shabaz
    shabaz over 3 years ago in reply to dougw

    Hi Doug,

    As a slight variation, instead of an internal temp sensor, I was thinking of using (say) an internal 8-bit ADC in the microcontroller for measuring just the thermistor, which could be fine over a limited temperature range, but over -40 to +50 degC it's not going to be granular enough, no matter if I try slightly linearizing the thermistor with resistors. A higher-res ADC in the microcontroller could be the answer to that, but I'm hoping that using the external ADC could be as good or better, and eliminates needing particular microcontrollers.

    • Cancel
    • Vote Up +2 Vote Down
    • Sign in to reply
    • Cancel
Reply
  • shabaz
    shabaz over 3 years ago in reply to dougw

    Hi Doug,

    As a slight variation, instead of an internal temp sensor, I was thinking of using (say) an internal 8-bit ADC in the microcontroller for measuring just the thermistor, which could be fine over a limited temperature range, but over -40 to +50 degC it's not going to be granular enough, no matter if I try slightly linearizing the thermistor with resistors. A higher-res ADC in the microcontroller could be the answer to that, but I'm hoping that using the external ADC could be as good or better, and eliminates needing particular microcontrollers.

    • Cancel
    • Vote Up +2 Vote Down
    • Sign in to reply
    • Cancel
Children
  • dougw
    dougw over 3 years ago in reply to shabaz

    Thermistor linearization is a bit tricky, but well documented and can get within a few degrees without too much problem, especially if you have a high resolution A/D. Your solution should be a good low-cost method.

    The TI MSP430F20x3 family (with 16 bit A/D and internal temp sensor) is listed by TI as under $1 in 1K qty. So it may be competitive to the cost of an A/D chip plus MCU plus thermistor. Although it does not have an amp.

    • Cancel
    • Vote Up +2 Vote Down
    • Sign in to reply
    • Cancel
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube