element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet & Tria Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • About Us
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Internet of Things
  • Technologies
  • More
Internet of Things
Blog IoT Digital Power Management and Power Integrity
  • Blog
  • Forum
  • Documents
  • Quiz
  • Events
  • Polls
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Internet of Things to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: caroline_teledynelecroy
  • Date Created: 17 Sep 2018 9:30 AM Date Created
  • Views 684 views
  • Likes 3 likes
  • Comments 0 comments
  • internet of things
  • oscilloscope
  • teledynelecroy
  • digital power
  • teledyne lecroy oscilloscope
  • teledyne
  • iot
  • power
  • lecroy
  • power integrity
  • pmic
  • power manegement
Related
Recommended

IoT Digital Power Management and Power Integrity

caroline_teledynelecroy
caroline_teledynelecroy
17 Sep 2018

An Internet of Things (IoT) device derives its power either from a 12-V DC supply or from a battery. In either case, power is fed to one or more power rails that operate at different voltages. These rails power the CPU and other functional blocks on the PC board. In this post, we'll take a look at how to examine an IoT's power supply for proper digital power management implementation and for power integrity.

 

Each DC-DC converter within an IoT device typically comprises several discrete DC-DC converters operating in parallel. Each of these converters are known as "phases," or, in some circles, as "channels." For example, a 3.3-V rail might be powered by four 3.3-V converters in parallel, with each supplying 25% of the total output current to the rail.

 


image

Figure 1: The half-bridge output current from each DC-DC phase is known as the inductor current

 

Referring to Figure 1, the half-bridge output current is typically known as the "inductor current" because it flows through the output inductor. The inductor current ramps up when pulse-width-modulation (PWM) signals are on and ramps down when they are off. If phases are switched on or off by the power-management IC (PMIC) depending on the load's variable power requirements, the PWM outputs will be time-interleaved into a single output by the PMIC. Monitoring the inductor current will enable us to capture and characterize any amplitude and phase errors between different phases, as well as any distortion patterns that might result.


image

Figure 2: Shown are some examples of key measurements of a DC power rail's transient response, including settling time, droop, and ripple

 

A key measurement for IoT power management is the transient response of a given DC rail and its associated PMIC, some example of which are shown in Figure 2. It's important to understand what happens to the rail when a load is instantaneously added or subtracted. This is a dynamic test that's best made on an oscilloscope with deep acquisition memory, which is critical in correlating bus commands with changes on the power rail. We want to ensure that rail characteristics such as mean voltage, ripple, droop, ringing, and settling time are within expected tolerances.

 


image

Figure 3: An eight-channel oscilloscope can be an invaluable tool in analyzing the broad picture in an IoT device with multiple power rails


To fully evaluate an IoT device's transient rail response, you will want to capture multiple rails at once and analyze how each behaves in response to a load change. An example of analysis of multiple rails appears in Figure 3. By tracking the mean power value of each rail, we can clearly see each rail's response to a load change. In applications of this nature, the value of an eight-channel oscilloscope reveals itself. Instruments such as Teledyne LeCroy's Motor Drive Analyzer will time-correlate all of these signals to deliver a comprehensive view of power-rail activity.

For any system to start up correctly, the DC power rails must turn on in a specific order, with a predetermined latency between each rail's power up. Conversely, sequence testing is also critical in the power-down process. Figure 4 depicts an example of how a serial-data message instructing the PMIC to turn on or off the DC rails is captured and decoded on an oscilloscope. The delay in each power rail's ramp up (or down) can be measured against when the message was sent.

 

image

Figure 4: Voltage/power-rail sequence testing is a critical aspect of IoT device evaluation

 

In an upcoming post, we'll turn our attention to RF test of an IoT device.

 

Previous blogs in this series:

 

Debugging the IoT

Anatomy of an IoT Device

  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube