element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • About Us
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Würth Elektronik
  • Products
  • Manufacturers
  • Würth Elektronik
  • More
  • Cancel
Würth Elektronik
Blog Isolated MagI³C Power Module Mastering the 24V Industry Bus III
  • Blog
  • Forum
  • Documents
  • Events
  • Polls
  • Files
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Würth Elektronik to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: nwieland
  • Date Created: 19 Dec 2023 1:19 PM Date Created
  • Views 247 views
  • Likes 4 likes
  • Comments 0 comments
  • technical insights
  • würth elektronik
  • magi³c_power_module
Related
Recommended

Isolated MagI³C Power Module Mastering the 24V Industry Bus III

nwieland
nwieland
19 Dec 2023
Isolated MagI³C Power Module Mastering the 24V Industry Bus III

Isolated MagI³C Power Module Mastering the 24V Industry Bus

Minimum Input Voltage – Lower Limit

Author: Timur Uludag / Editor: Gerhard Stelzer

In the industrial environment, 24 V bus systems are widely used to supply a wide range of field devices. The article series explained selection criteria for power modules, typical voltage ranges and the issues with input voltage limits. Part 3 now discusses the lower limit of the minimum input voltage.

Usually the cable cross-sections for the DC bus is selected based on experience, rough estimation or with the use of tables. It should be noted that the commonly used design constraints for cable sizing are to avoid overheating .This means the voltage drop of the connecting line is mostly being overlooked and therefore not considered. This voltage drop in turn means a difference in the voltage levels between output of the electrical supply (Vout) and the input of the application (+VIN).

For a better clarification a numerical example calculation is shown with real values that could be found in an industrial plant:

image

Based on the cable cross sectional area A, cable length l, and the specific resistance ρ, the electrical resistance R can be calculated as 1.376Ω using equation (1). If we consider a 100W supply, a rated current of 4A flows through the 24V DC bus. Based on equation (2) we will get a voltage drop across the connecting lines. That means, at the supply input of the application, e.g. PLC, the nominal 24V cannot be provided as it is only 24V-5.5V=18.5V. If we take a closer look at the PLC standard IEC 61131-2, the input voltage range for the supply voltage is defined to 19.2V to 30V. With a supply voltage of 18.5V, the undervoltage shut down of the PLC will be tripped and it will stop its operation.

The lower operating voltage limit of 8V of the SIP-8 enables a placement in an application far away from the supply cabinet. In addition, an undervoltage detection circuit can be installed to protect against an input voltage drop below 9V, in a typical 9V application.

This article series is being continued with “Maximum input voltage – upper limit”.

  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube