element14 Community
element14 Community
    Register Log In
  • Site
  • Search
  • Log In Register
  • Community Hub
    Community Hub
    • What's New on element14
    • Feedback and Support
    • Benefits of Membership
    • Personal Blogs
    • Members Area
    • Achievement Levels
  • Learn
    Learn
    • Ask an Expert
    • eBooks
    • element14 presents
    • Learning Center
    • Tech Spotlight
    • STEM Academy
    • Webinars, Training and Events
    • Learning Groups
  • Technologies
    Technologies
    • 3D Printing
    • FPGA
    • Industrial Automation
    • Internet of Things
    • Power & Energy
    • Sensors
    • Technology Groups
  • Challenges & Projects
    Challenges & Projects
    • Design Challenges
    • element14 presents Projects
    • Project14
    • Arduino Projects
    • Raspberry Pi Projects
    • Project Groups
  • Products
    Products
    • Arduino
    • Avnet Boards Community
    • Dev Tools
    • Manufacturers
    • Multicomp Pro
    • Product Groups
    • Raspberry Pi
    • RoadTests & Reviews
  • Store
    Store
    • Visit Your Store
    • Choose another store...
      • Europe
      •  Austria (German)
      •  Belgium (Dutch, French)
      •  Bulgaria (Bulgarian)
      •  Czech Republic (Czech)
      •  Denmark (Danish)
      •  Estonia (Estonian)
      •  Finland (Finnish)
      •  France (French)
      •  Germany (German)
      •  Hungary (Hungarian)
      •  Ireland
      •  Israel
      •  Italy (Italian)
      •  Latvia (Latvian)
      •  
      •  Lithuania (Lithuanian)
      •  Netherlands (Dutch)
      •  Norway (Norwegian)
      •  Poland (Polish)
      •  Portugal (Portuguese)
      •  Romania (Romanian)
      •  Russia (Russian)
      •  Slovakia (Slovak)
      •  Slovenia (Slovenian)
      •  Spain (Spanish)
      •  Sweden (Swedish)
      •  Switzerland(German, French)
      •  Turkey (Turkish)
      •  United Kingdom
      • Asia Pacific
      •  Australia
      •  China
      •  Hong Kong
      •  India
      •  Korea (Korean)
      •  Malaysia
      •  New Zealand
      •  Philippines
      •  Singapore
      •  Taiwan
      •  Thailand (Thai)
      • Americas
      •  Brazil (Portuguese)
      •  Canada
      •  Mexico (Spanish)
      •  United States
      Can't find the country/region you're looking for? Visit our export site or find a local distributor.
  • Translate
  • Profile
  • Settings
Internet of Things
  • Technologies
  • More
Internet of Things
Blog Investigating IoT Wireless Signals
  • Blog
  • Forum
  • Documents
  • Quiz
  • Events
  • Polls
  • Members
  • Mentions
  • Sub-Groups
  • Tags
  • More
  • Cancel
  • New
Join Internet of Things to participate - click to join for free!
  • Share
  • More
  • Cancel
Group Actions
  • Group RSS
  • More
  • Cancel
Engagement
  • Author Author: caroline_teledynelecroy
  • Date Created: 24 Sep 2018 8:09 AM Date Created
  • Views 731 views
  • Likes 5 likes
  • Comments 0 comments
  • bluetooth
  • ble
  • internet of things
  • wi-fi
  • pcb
  • iot devices
  • iot training
  • teledynelecroy
  • teledyne lecroy oscilloscope
  • teledyne
  • iot
  • wireless
  • bluetooth low energy
  • lecroy
Related
Recommended

Investigating IoT Wireless Signals

caroline_teledynelecroy
caroline_teledynelecroy
24 Sep 2018

Many IoT devices use wireless methods to communicate with other devices or with host systems. Just as with DC power-rail signals, probing of RF signals should be done with as little noise and as non-invasively as possible and with the best possible signal fidelity. Effective probing opens the door to Wi-Fi and Bluetooth signal analysis with RF demodulation, vector signal analysis, and spectrum analysis.

 

Acquiring wireless signals typically isn't difficult with IoT devices. In many cases, wireless antennas are connected to the IoT's printed-circuit board (PCB) with U.FL connectors, which are ultra-small, surface-mount coaxial connectors. A U.FL connector on the IoT's PCB enables a clean, direct connection to the device's RF output.

 

image

Figure 1: Many IoT devices accept wireless antennas using U.FL connectors

 

Teledyne LeCroy's RP4030 active voltage-rail probe is a good option for RF applications due to its low noise, high offset range, and 4-GHz bandwidth. Figure 1 depicts the RP4030 connected to the U.FL connector on an IoT device's PCB. In this case, 20-dB attenuators have been added to the front end of the RP4030 Probus interface to bring the signal within the probe's 1.6-V pk-pk dynamic range. The waveform can then be rescaled on the oscilloscope to reflect the true measurement of the acquired signal.

 

A typical IoT wireless IC supports various network standards, including IEEE 802.11 and Bluetooth, and will operate in the 2.4- and 5-GHz bands. There also are various modulation modes such as CCK and orthogonal frequency division multiplexing (OFDM) with PBSK, QPSK, 16 QAM,  64 QAM, and others for the engineer to validate.

 

Modern oscilloscopes can bring the following tools to bear on the RF validation challenge:

  • Extensive set of analysis tools in the oscilloscope application for wireless signal characterization and debugging
  • Vector signal-analysis software to analyze 802.11 and OFDM traffic
  • Demodulation math function for amplitude, frequency, and phase demodulation
  • Spectrum-analysis application for frequency-domain analysis and insight

 

image

Figure 2: Bluetooth Low Energy slaves advertise on channels 37-39; BLE masters listen for these advertising packets and send a Connect Request to slaves

 

Let's look at Bluetooth Low Energy (BLE) advertising packets and how they might be analyzed using RF-burst amplitude and frequency demodulation. Referring to Figure 2, a BLE slave advertises on channels 37, 38, and 39, which are assigned to 2.402, 2.426, and 2.480 GHz, respectively. BLE channels are space 2 MHz apart. A BLE master listens for the advertising packets and sends a
Connect Request to a slave it wants to connect with.One metric we want to look at is how centered each of these packets are around its channel's mean frequency, and how much the spectral content is spread around that mean frequency.

 

image

Figure 3: An amplitude-demodulated BLE advertising burst (shown in top-left grid above) reveals details regarding period, burst width, duty cycle, and more

 

Referring to Figure 3, the top-left grid shows the BLE advertising bursts. Using the oscilloscope's amplitude-demodulation math function, we can create a burst envelope waveform with which to measure the bursts's width, period, and duty cycle. These can be seen as the light-green trace bordering the burst envelope waveform.

 

The next grid down at left is a zoom trace of the Channel 37 burst. Below that in magenta is a fast-Fourier transform of that signal to measure its spectral content. Spectral analysis reveals that the burst is centered around 2.402 GHz and that most of its energy is contained within the desired 2-MHz bandwidth as expected.


The frequency demodulator math function can also be used on the GFSK-modulated burst to demodulate it into its serial-data bit stream (Figure 3, top right grid). The data can then be decoded to read the packet's preamble, axis, address, the advertising channel's header, and the packet's payload data directly on the oscilloscope.

 

Teledyne LeCroy's serial-data analysis software provides some extremely flexible capabilities, such as the length gate feature that enables performance of independent parallel analysis on each of the BLE advertising bursts simultaneously. The screen capture of Figure 4 shows Channel 37 on lane one, Channel 38 on lane two, and Channel 39 on lane three. We can view the spectrum of each RF burst and render eye diagrams of the frequency-demodulated data to analyze the signal quality of the underlying bit streams.

 

image

Figure 4: The length gate feature of Teledyne LeCroy's serial-data analysis software permits parallel analysis of each BLE advertising bursts simultaneously

 

In the measurement table at the bottom of Figure 4, we can find reports of the eye height, width, and peak-to-peak and RMS jitter, as well as other serial-data metrics that provide the user with deep insight into what's happening with their serial-data bit stream.

 

We'll continue looking into the RF aspects of IoT devices in our next post.

 

Previous blogs in this series:

 

Debugging the IoT

Anatomy of an IoT Device

IoT Digital Power Management and Power Integrity

  • Sign in to reply
element14 Community

element14 is the first online community specifically for engineers. Connect with your peers and get expert answers to your questions.

  • Members
  • Learn
  • Technologies
  • Challenges & Projects
  • Products
  • Store
  • About Us
  • Feedback & Support
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Legal and Copyright Notices
  • Sitemap
  • Cookies

An Avnet Company © 2025 Premier Farnell Limited. All Rights Reserved.

Premier Farnell Ltd, registered in England and Wales (no 00876412), registered office: Farnell House, Forge Lane, Leeds LS12 2NE.

ICP 备案号 10220084.

Follow element14

  • X
  • Facebook
  • linkedin
  • YouTube