Remote Agriculture Solution
Blog Links:
#02: Components and Design Structure
#04: Setting up Arduino Nano 33 IOT
#08: Linking Everything to Arduino Nano 33 IOT
#09: Time to See the Work in Action
In this blog, we will link all individual components to Arduino Nano 33 IOT and setup the remote control server.
Finally, all the code and wiring has been completed. I have uploaded the same here as well as on Github. The pictures have been added so that you can see how the setup can be done on both hardware and software end.
The Arduino Uno code has been changed a bit. I have had to remove the servo as I was left with no space on my chassis. So, I have removed that code and the servo. Due to that, the bot will always more left when it encounters an obstacle(or right if you would like to change it). I completely forgot about the size before starting and getting a new chassis right now would be a little too difficult. Any case, we worked with both things so it was fun.
The Arduino Nano 33 IOT code is same as in the last blog as everything was linked in that post.
The working video will be shown in the next Blog. Hope you are as excited as me!!!
Wiring:
Code:
AgroBot final code(for Arduino Uno):
https://github.com/aaryan2134/Remote-Agriculture-Solution/tree/main/Final_Arduino_Uno_Code_-_Agrobot
//Remote Agriculture Solution // Autonomous Agro Bot /* Arduino based bot for automatic movement around the farm Dev: Aaryan Arora For Design For A Cause 2021 */ //Libraries #include <Servo.h> int TurnDelay = 1100; #define TRIGGER_PIN1 8 // Arduino pin tied to trigger pin on the ultrasonic sensor. #define ECHO_PIN1 12 // Arduino pin tied to echo pin on the ultrasonic sensor. long duration, cm; //Constants const int motorA1 = 6; //motor A positive (+) pin to pin 6 (PWM) (from L293D module!) const int motorA2 = 9; //motor A negative (-) pin to pin 9 (PWM) const int motorB1 = 10; //motor B positive (+) pin to pin 10 (PWM) const int motorB2 = 11; //motor B negative (-) pin to pin 11 (PWM) //Variables int distance; //Variable to store distance from an object int checkRight; //To store right distance int checkLeft; //To store left distance //declaring functions void forward(); void backward(); void stop(); void left(); void right(); int ultraFront(); void setup() { //Setting Motor control pins to output pinMode(motorA1, OUTPUT); pinMode(motorA2, OUTPUT); pinMode(motorB1, OUTPUT); pinMode(motorB2, OUTPUT); //Setting pins from Ultrasonic Sensor pinMode(TRIGGER_PIN1, OUTPUT); pinMode(ECHO_PIN1, INPUT); } void loop() { //Read distance... distance = ultraFront(); //Check for objects... if (distance > 15) { forward(); //All clear, move forward! } else { left(); //turn left otherwise } } // functions for various type of motions void forward() { digitalWrite(motorA1, HIGH); digitalWrite(motorA2, LOW); digitalWrite(motorB1, HIGH); digitalWrite(motorB2, LOW); } void backward() { digitalWrite(motorA1, LOW); digitalWrite(motorA2, HIGH); digitalWrite(motorB1, LOW); digitalWrite(motorB2, HIGH); } void right() { digitalWrite(motorA1, HIGH); digitalWrite(motorA2, LOW); digitalWrite(motorB1, LOW); digitalWrite(motorB2, HIGH); } void left() { digitalWrite(motorA1, LOW); digitalWrite(motorA2, HIGH); digitalWrite(motorB1, HIGH); digitalWrite(motorB2, LOW); } void stop() { digitalWrite(motorA1, LOW); digitalWrite(motorA2, LOW); digitalWrite(motorB1, LOW); digitalWrite(motorB2, LOW); } //for measuring distance using ultrasonic sensor int ultraFront() { digitalWrite(TRIGGER_PIN1, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN1, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN1, LOW); // Read the signal from the sensor: a HIGH pulse whose // duration is the time (in microseconds) from the sending // of the ping to the reception of its echo off of an object. pinMode(ECHO_PIN1, INPUT); duration = pulseIn(ECHO_PIN1, HIGH); // Convert the time into a distance cm = (duration / 2) * 29.1; // Divide by 29.1 return cm; }
Monitoring System(for Arduino Nano 33 IOT):
//Remote Agriculture Solution //Monitoring System /* Using Arduino Nano 33 IOT to monitor farm conditions using IOT Dev: Aaryan Arora For Design For A Cause 2021 */ //libraries #define BLYNK_PRINT SerialUSB #include <SPI.h> #include <WiFiNINA.h> #include <BlynkSimpleWiFiNINA.h> #include <EduIntro.h> /* Used this library for getting temperature reading from DHT 11 Can be downloaded from here or arduino library manager https://github.com/arduino/EduIntro */ //for water level #define TRIGGER_PIN1 8 // Arduino pin tied to trigger pin on the ultrasonic sensor. #define ECHO_PIN1 12 // Arduino pin tied to echo pin on the ultrasonic sensor. //for pesticide level #define TRIGGER_PIN2 9 // Arduino pin tied to trigger pin on the ultrasonic sensor. #define ECHO_PIN2 10 // Arduino pin tied to echo pin on the ultrasonic sensor. //water pump const int motorA1 = 2; //motor A positive pin to pin 6 (PWM) (from L293D module!) const int motorA2 = 3; //motor A negative pin to pin 9 (PWM) //pesticide pump const int motorB1 = 5; //motor B positive pin to pin 10 (PWM) const int motorB2 = 6; //motor B negative pin to pin 11 (PWM) DHT11 dht11(D7); // creating the object sensor on pin 'D7' int water_level(); //to measure level of water in container int pesticide_level(); //to measure level of pesticide in container //Use your authorization token after creating new project in Blynk App char auth[] = ""; // Your WiFi credentials. // Set password to "" for open networks. char ssid[] = ""; char pass[] = ""; //constants int LDRpin = A0; // select the input pin for LDR int LDRvalue = 0; // variable to store the value coming from the LDR int lux = 0; //to store the intensity of light in lux long duration, cm; int soil_pin = A2; //soil sensor pin int moisture_value ; //storing result from soil sensor BlynkTimer timer; // This function sends Arduino's up time every second to Virtual Pin (5). // In the app, Widget's reading frequency should be set to PUSH. This means // that you define how often to send data to Blynk App. //for spraying pesticide when user calls it int value; BLYNK_WRITE(V2) { value = param.asInt(); if (value == 1) { digitalWrite(motorB1, HIGH); digitalWrite(motorB2, LOW); delay(30); digitalWrite(motorB1, LOW); digitalWrite(motorB2, LOW); } } void myTimerEvent() { //starting the DHT 11 sensor dht11.update(); //Getting the LDR analog value LDRvalue = analogRead(LDRpin); //Using the formula for conversion from analog value to lux lux = (512000 / LDRvalue) - 500; //calculating moisture percentage using analog value of the sensor moisture_value = analogRead(soil_pin); //converting to percentage moisture_value = (moisture_value * 100) / 1023; //using formula to account for resistance moisture_value = 35 + (100 - moisture_value); //sending all values to the Blynk App using Virtual Pins Blynk.virtualWrite(V5, lux); Blynk.virtualWrite(V6, dht11.readCelsius()); Blynk.virtualWrite(V7, dht11.readHumidity()); Blynk.virtualWrite(V8, moisture_value); Blynk.virtualWrite(V0, water_level()); Blynk.virtualWrite(V1, pesticide_level()); } void setup() { //Setting pins from Ultrasonic Sensor pinMode(TRIGGER_PIN1, OUTPUT); pinMode(ECHO_PIN1, INPUT); SerialUSB.begin(9600); Blynk.begin(auth, ssid, pass); // Setup a function to be called every 5 seconds timer.setInterval(5000L, myTimerEvent); } void loop() { Blynk.run(); timer.run(); // Initiates BlynkTimer //for watering the crop below 60 moisture level if(moisture_value < 60) { digitalWrite(motorA1,HIGH); digitalWrite(motorA2,LOW); delay(100); digitalWrite(motorA1,LOW); digitalWrite(motorA2,LOW); } } int water_level() { digitalWrite(TRIGGER_PIN1, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN1, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN1, LOW); // Read the signal from the sensor: a HIGH pulse whose // duration is the time (in microseconds) from the sending // of the ping to the reception of its echo off of an object. pinMode(ECHO_PIN1, INPUT); duration = pulseIn(ECHO_PIN1, HIGH); // Convert the time into a distance cm = (duration * 0.0348) / 2; //sending email when water level falls below 3 if (cm < 3) { Blynk.email("Water level alert", "Fill water in the container"); } return cm; } int pesticide_level() { digitalWrite(TRIGGER_PIN2, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN2, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN2, LOW); // Read the signal from the sensor: a HIGH pulse whose // duration is the time (in microseconds) from the sending // of the ping to the reception of its echo off of an object. pinMode(ECHO_PIN2, INPUT); long duration = pulseIn(ECHO_PIN2, HIGH); // Convert the time into a distance long cm = (duration * 0.0348) / 2; //sending email when pesticide level falls below 4 if (cm < 4) { Blynk.email("Pesticide level alert", "Fill pesticide in the container"); } return cm; }
Pictures:
Connect with Me:
Github - aaryan2134